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Short Summary

In this thesis we consider the dynamics of generic open quantum systems described
using quantum master equations (QMEs). Motivated by the puzzling fact that there
are two exact QMEs, the time-nonlocal (Nakajima-Zwanzig) and the time-local (time-
convolutionless) QME, our focus is finding the general connection between these two
canonical approaches. The result takes the form of an elegant functional fixed-point
relation between the time-local generator G and the time-nonlocal memory kernel K,
G = K̂[G]. This leads to several new insights into important topics in open system dy-
namics, including the construction of non-perturbative Markov approximations, their
relation to initial slip corrections, and a memory expansion used in studies of driven
quantum dynamics and transport. Furthermore, it naturally suggests a novel construc-
tion of time-local descriptions from iterations of the fixed-point functional, which we
explore in detail for the Jaynes-Cummings model describing atomic decay in a radiation
field and the resonant level model describing non-interacting transport to an electron
reservoir.

We further leverage this relation to derive the general connection between time-local
and time-nonlocal perturbation expansions, a long-standing problem. This allows the
technically more advanced time-nonlocal approximation strategies to be translated into
a corresponding time-local picture, which is advantageous from the quantum infor-
mation vantage point. We exemplify this using the Anderson model of an interacting
quantum dot coupled to voltage-biased electron reservoirs to show how the well-known
diagrammatic expansion of the time-nonlocal memory kernel can be translated into its
time-local form term-by-term. Additionally, we apply this technique to investigate a
powerful renormalized series, which reveals limitations of the time-local approach.

Finally, based on this series we introduce a time-nonlocal renormalization group
to address the interesting low-temperature dynamics of Anderson-like models. This
method works by lowering the environment temperature and calculating the higher or-
der coupling effects this generates. One of its key features is that a single renormalization
group trajectory contains the full temperature dependence of dynamical and transport
quantities. Themethod can be formulated in real-time, which brings several advantages,
in particular for analyzing transient dynamics. Our numerical results are benchmarked
against several other advanced methods, such as the functional renormalization group,
the density-matrix renormalization group, and the quantum Monte Carlo method.
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Kurzzusammenfassung

In dieser Arbeit untersuchen wir die Dynamik generischer offener Quantensysteme
mithilfe von Quantenmastergleichungen (QMG). Motiviert durch die überraschende
Tatsache, dass es zwei exakte QMG gibt, die zeitnichtlokale (Nakajima-Zwanzig) und
die zeitlokale (zeitfaltungsfreie) QMG, leiten wir die allgemeine Beziehung zwischend
diesen beiden kanonischen Grundgleichungen ab. Als Ergebnis finden wir, dass der
zeitlokale Generator G und der zeitnichtlokale Gedächtniskern K durch die elegante
Fixpunktbeziehung G = K̂[G] miteinander verbunden sind. Dies führt zu mehreren
neuen Erkenntnissen über die Dynamik offener Quantensysteme, z.B. über die Kon-
struktion von nicht-perturbativen Markov Näherungen, deren Beziehung zu initialen
Ausrutschkorrekturen und über eine Gedächtnisreihenentwicklung, die in Studien zu
getriebener Quantendynamik und -transport genutzt wird. Außerdem legt dies auf
natürliche Weise nahe, zeitlokale Beschreibungen der Dynamik durch Iterationen des
Fixpunktfunktionals zu konstruieren. Dies untersuchen wir im Detail für das Jaynes-
Cummings Modell eines Atoms in einem Strahlungsfeld und das Resonanzniveau Mo-
dell, das nichtwechselwirkenden Transport zu elektronischen Reservoiren beschreibt.

Wir nutzen diese Fixpunktbeziehung außerdem, um die allgemeine Verbindung
zwischen zeitlokalen und zeitnichtlokalen Störungsreihen abzuleiten, ein seit langem
offenes Problem. Dies ermöglicht es technisch fortgeschrittenere zeitnichtlokale Nähe-
rungsverfahren in eine korrespondierende zeitlokale Formzubringen, was vorteilhaft ist
für Betrachtungen aus der Quanteninformation. Wir veranschaulichen dies am Beispiel
eines wechselwirkenden Anderson-Quantenpunktes gekoppelt an elektronische Reser-
voire unter einem Spannungs-Bias, indem wir die wohlbekannte diagrammatische Ent-
wicklung des zeitnichtlokalen Gedächtniskerns Term für Term in eine zeitlokale Form
übersetzen. DesWeiteren nutzenwir diese Technik, um einemächtigere renormalisierte
Reihe zu analysieren, was Limitationen des zeitlokalen Ansatzes offenbart.

Schließlich führen wir basierend auf dieser renormalisierten Reihe eine zeitnicht-
lokale Renormierungsgruppe ein, die die interessante Tieftemperaturedynamik von
Anderson-Quantenpunkt ähnlichen Modellen beschreibt. Diese Methode berechnet
Kopplungseffekte höherer Ornung, die durch ein Verringern der Temperature entste-
hen. Ein Hauptmerkmal ist, dass einzelne Renormierungsgruppentrajektorien bereits
die vollständige Temperaturabhängigkeit von dynamischen Kenngrößen enthalten. Die
Methode kann in Echtzeit formuliert werden, was mehrere Vorteile mit sich bringt,
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insbesondere für die Analyse von transienter Dynamik. Wir vergleichen unsere nume-
rischen Ergebnisse mit verschiedenen anderen fortgeschrittenenMethoden, wie z.B. der
funktionalen Renormierungsgruppe, der Dichtematrix-Renormierungsgruppe und der
Quanten-Monte-Carlo-Methode.
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Introduction

The field of open quantum systems encompasses many topics, ranging from quantum
optics [6–8], quantum transport [9] and chemical physics [10, 11] to more modern ar-
eas such as quantum information [12], quantum thermodynamics [13–15] and quantum
(non)-Markovianity [16–19]. Each of these topics is significantly impacted by the fact
that quantum systems cannot be regarded as perfectly isolated from their environment,
but instead require an account of its interaction with the environment responsible for
measurable exchange of energy and/or particles. Although the environment’s influence
is sometimes unwanted in practice, most notably in the construction of quantum com-
puters, it can lead to interesting but very complex many-body effects worth studying in
their own right. This is particularly the case when the system-environment coupling is
strong.

This thesis focuses on the dynamical equations that describe such physically inter-
esting open systems. Specifically, it addresses a number of essential questions about the
interrelation between the fundamental laws governing open systems with applications
to basic problems in perturbation theory, transient time-dependent dynamics, but also
more advanced renormalization groups.

1.1 | Dynamical equations of a quantum system
Typically, it is not possible to microscopically describe the degrees of freedom of a total
system, i.e., of a system and its environment together. This practically forces one to find
a simpler, reduced description of the open system alone, even if a (reasonably good)
model of the total system is known. As a consequence, quantum states can no longer
be mathematically described as wavefunctions |ψ(t)〉, but instead as density operators
ρ(t). Furthermore, these open-system density operators do not evolve unitarily, but

1
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EnvironmentQuantum device

Schrödinger’s equation

Damping
describes total system

Figure 1.1. Interaction of a quantum system with its environment. When integrating
out the environment to find an effective description of the quantum device alone, two
fundamental laws emerge: One features a time-nonlocal convolution (denoted by ∗) over
a memory kernel K, the other a time-local generator G.

according to so-called completely positive and trace preserving propagators, denoted by
Π, which leads to physically richer dynamics in comparison to closed systems. These
dynamics can be conveniently described using a quantum master equation (QME). In
stark contrast to closed quantum systems which always evolve according to a single
fundamental law – the Schrödinger equation – there are two exact QMEs: the so-called
time-nonlocal (Nakajima-Zwanzig) and the time-local (time-convolutionless) QME.

The main difference between these two equivalent descriptions lies in their treat-
ment and understanding ofmemory. Although it is clear that memory is a key feature of
open systems (as opposed to closed ones), this term has no universal definition. Nev-
ertheless it is central to the physics of open-system dynamics and therefore continues
to be discussed and refined. Whereas the time-nonlocal QME is an integro-differential
equation which uses a memory kernel K to make memory explicit from the start, the
time-local QME is an ordinary differential equation that keeps memory implicit within
a generator G, which is therefore a much more complicated quantity. Thus, for open
systems there are surprisingly two possible generalizations of the Hamiltonian H, see
Fig. 1.1. As a consequence of these two starting points, a plethora of completely different
approximation schemes have been developed to address various questions of interest
in the field of open systems. While this has led to a variety of insights and progress,
the communities have remained disconnected, focusing exclusively on one or the other
QME. One reason for this – perhaps the most important – is the lack of a simple, explicit
connection between these two fundamental equations of motion of open systems.

2
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1.2 | Equivalent equations, different physical insights
The first part of this thesis addresses and, in fact, solves this outstanding issue by
deriving the general connection between these two canonical approaches [Chap. 3]. This
connection is then applied to derive “translation rules” for series expansions between the
memory kernel K and the generator G used in numerous applications [Chap. 4], which
addresses the non-trivial question of which expansion type (K or G) is “better”. One of
the main motivations for this arose from a detailed study at the beginning of this project
reported in Ref. [1], in which both approaches were worked out explicitly for a solvable
yet sufficiently rich model. Parts of that study are used in Sec. 3.5. The physical models
and particularly challenging phenomena we use to illustrate the differences between
descriptions based on K or G are introduced in Sec. 1.4.

Of course, one might wonder why it is relevant to be able to convert between two
equivalent QMEs, if one can just solve the equation one has in hand for ρ(t) instead?
Careful consideration of this question supports a complementary view [20–22]. Typically
the memory kernel K is easier to compute and advanced methods have been developed
to obtain it analytically [23, 24] and numerically [25, 26] with successful applications to
nontrivialmodels [27–30] covering transient and stationarydynamics, aswell as counting
statistics [31–33] of observables. By contrast, the direct computation of the generator G
using the time-convolutionless formalism [34–39] is typically more challenging.

However, some schemes that aim to solve the time-nonlocal equation (K) approx-
imately, while accounting for the frequency dependence (retardation) of the memory
kernel, actually construct a corresponding time-local equation first (G), which is subse-
quently solved to obtain the propagator [31, 40–42]. This may lead one to believe that
“memory” is accounted for using an effective time-local equation, which can lead to
much confusion if a clear view on time-local and non-local descriptions is missing.

Another physically more interesting point is that the generator G is by itself of par-
ticular interest – it allows for the inference of important properties of the propagator
Π, the solution of the dynamics, which remarkably are very difficult to see otherwise,
even with the propagator Π already “in hand” [1]. For example, the physical legiti-
macy of the propagator can in many situations be explicitly inferred [18, 43, 44] from
a time-dependent canonical form of its generator G [45]. This is important for the
phenomenological construction of QMEs [20, 21] and of microscopic models that obey
prescribed QMEs [46]. Working with K, it is considerably less clear how to construct
phenomenological QMEs whose solutions make any physical sense at all (irrespective
whether they accurately describe the targeted behaviour). Related to this is that G often
has a clear operational meaning in terms of quantum jumps, which makes it advanta-

3
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geous for stochastic simulations. For the same reason, time-local QMEs are the method
of choice for constructing noise models in quantum-information science and technology.
Despite continued efforts, this is muchmore complicated to achievewhen usingK. Even
though completely positive approximations [see Sec. 2.1] can in principle be computed
by reorganizing the microscopic coupling expansion, this comes at the cost of violating
trace preservation [47]. Beyond that, guarantees about the physicality of K can only be
made for special parametrizations of K, such as legitimate-pair decompositions [48, 49],
semi-Markov [50, 51] or collision-models [52].

A further key property that can be directly inferred from G, but which seems pro-
hibitively difficult to discuss when using K [53], is the so-called divisibility of the evo-
lution Π. This plays a prominent role in the field of quantum Markovianity [Sec. 2.2.2],
in which one aims to define “memory” precisely, which, as we already noted, is a
key physical concept of quantum dynamics. Divisibility also features in applied tasks
such as quantum coding [54, 55] and tomography [56], key distribution [57], telepor-
tation [58], and work extraction by erasure [59]. It should be noted that retardation
(or frequency dependence) is often uncritically identified with “Markovianity” when
working with time-nonlocal QMEs [41, 42]. Although this identification is tempting, we
will see that it is misleading: memoryless dynamics can correspond to time-dependent
memory kernels [Sec. 2.2.2] and consistent Markov approximations may involve finite
frequency contributions [Sec. 3.2]. Finally, the time-local nature of G is crucial to access
geometric [60–62] and possible topological [63, 64] phases in open-systems. This is a
very active field with many unanswered questions and applications to pumping, full-
counting statistics [65], fluctuation relations [66] and quantum thermodynamics [13].
Also here descriptions based on K spoil the standard assumption of time-locality made
in geometric analysis of dynamical equations. Thus, there are many reasons for explicitly
understanding the general relation between K and G.

1.3 | Renormalization groups for open systems
At low temperatures interactions can have a significant and often surprising impact on
the dynamics of quantum systems. This necessitates the application of methods more
advanced than perturbation theory, such as renormalization group (RG) methods. Even
though we will be considering open systems later on, we will first focus on discussing
the RG concept for closed systems because already here the key ideas can be understood.

Historically, the development of RG techniques was in a sense motivated by mea-
surements of the electrical resistance of a metal. Simply put, electrical resistance is

4
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caused by electron-phonon scattering (∝ T5), electron-electron scattering (∝ T2) and
electron-impurity scattering (T independent). Thus, for a long time it was believed
that the resistance should saturate at some finite value as T → 0. In the 1930s, how-
ever, it was found by measuring gold at temperatures T < 10K that it is also possible
for the resistance to rise again if the temperature is lowered sufficiently, thus giving a
finite temperature minimum [67]. It took some 30 years until J. Kondo found that mag-
netic impurities were responsible for this effect [68]. He used perturbation theory to
show that, under an antiferromagnetic electron-impurity interaction, spin-flip scatter-
ing events lead to a logarithmic increase of the resistance. As a consequence all electrons
become correlated and have to be described by a complicated many-body wavefunction.
Interestingly, the Kondo effect, as it is now called, was also observed later in quantum
dots [69], a prime example of an open quantum system, which allow for the system-
atic control and study of the interplay with non-equilibrium phenomena by applying a
temperature or bias-voltage. We consider such quantum dot systems in Chap. 4 and 5.

Even though Kondo’s insight marked a breakthrough, the unphysical logarithmic
divergences produced by perturbation theory were a severe theoretical problem. This
was only conclusively solved by K. Wilson in 1975 through the development of the
renormalization group technique [70], building on ideas of Kadanoff [71, 72] and An-
derson [73]. As formulated by Wilson, the failure of simple perturbative descriptions is
generic whenever systems lack a characteristic scale. For example, in a magnet at the
critical point the magnetization fluctuates with all wavelengths (missing length scale)
and in quantum electrodynamics high energy scattering leads to intermediate states
containing momenta of arbitrary magnitude (missing energy scale).

To describe these systems,Wilson’s RG approach is, roughly speaking, to first replace
the original Hamiltonian H describing the physical problem with a simpler effective
Hamiltonian HN with typical energy scaleΛ−N such that H = limN→∞ HN . For example,
inWilson’swork on the Kondo problem, the parameter N was the number of logarithmic
intervals in which the conduction band is discretized. In the second step, one relates
Hamiltonians on these successive energy scales and their ground states with each other
through a map F called the RG transformation, HN+1 = F [HN ]. One of Wilson’s key
insights was that, in the above-mentioned problems, energy scales are locally coupled
and therefore each step HN → HN+1 only represents a small perturbation which can be
computed systematically. Therefore an accurate solution can be obtained by iterating F
until an RG fixed point is reached1.

There are several obstacles in applying the above described RG ideas to open quan-

1These RG fixed points are a priori not connected to the fixed points discussed in Chap. 3.
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tum systems: of interest are not only non-equilibrium stationary states, but also the
transient dynamics towards these stationary states. Since Wilson’s work, much progress
has been made. Wilson’s original numerical renormalization group was extended to
time-dependent [74] and non-equilibrium states [75, 76]. Additionally other prominent
RG approaches applicable to non-equilibrium open systems were developed such as the
density matrix renormalization group (closely tied to quantum information) [77, 78], the
functional renormalization group (originating in field theory) [79, 80], quantum Monte
Carlo methods [81] or path integral approaches [82], to name a few.

Onemaywonder how to implement RG techniques in the context of QMEs, consider-
ing our discussion of the two fundamental dynamical equations of open systems. Within
the time-local approach, we know of no RG scheme that directly computes the generator
G. In Chap. 4 we shed some light on the complications that arise when one tries to use
G by translating advanced approximation schemes known for K. Not surprisingly, the
problems relate to the issue of memory considered here as retardation. However, the
connection betweenK and G which we derive in Chap. 3 suggests an indirect path to do
RG for K first, and then transform the result to G.

The construction of (semi-)analytical RG methods for open quantum systems is in-
deed possible within the time-nonlocal approach using K, for example, the real-time
renormalization group (RTRG) method is by now well-established. In its original for-
mulation [83, 84] a real-time cutoff tc was included into the memory kernel, K → Ktc ,
which effectively cut off the memory such that limtc→∞Ktc = K. For technical reasons
the RTRG was later reformulated in frequency space [23, 85]. In its most recent formu-
lation, called the E-flow scheme2, the RTRG has been successfully applied to a range of
models, such as the non-equilibrium Kondo model [27, 86–89], the interacting resonant
level model [90, 91] or the spin boson model [29, 92] allowing detailed analytical or
numerical calculations in experimentally relevant regimes.

We follow this line of development in the last part of this thesis [Chap. 5] and intro-
duce anewmethod for the computationof thememorykernel byanalyzing its temperature
dependence. At its core lies the observation that temperature sets the inverse correlation
time of the reservoirs in line with common intuition about memory as retardation, and
is therefore connected to thememory contained inK – whereas at high temperatures the
correlations are short ranged (no memory), they decay very slowly (power-law like) at
small temperatures. This closely connects to a dynamical version ofWilson’s observation
about the lack of a scale. Although this is well known, the conceptually obvious route
to access low-temperature, many-body physics by literally lowering the temperature has

2In the E-flow reference [27] E denotes the Laplace variable, which we instead call ω in this thesis.

6
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not been previously explored. We introduce a RG scheme dubbed the T-flow which
systematically calculates the generated higher-order coupling effects when lowering the
temperature in a renormalization group flow. This provides a new way of computing
the memory kernel in real time, naturally describing transient dynamics. Importantly
a single RG trajectory describes the physics at all traversed finite temperatures, which
saves numerical effort and is physically interesting since correlation effects often express
themselves in a pronounced T-dependence. Although not explored, this new approach
is naturally of interest in the active field of quantum thermoelectric studies with many
applications.

1.4 | Analyzed models and their applications
As the above introduction outlined, the thesis focuses on several quite general open
problems surrounding quantum dynamical equations. In illustrating and exploring
these topicswemake use of a number ofmodelswhich arewell known from applications
to quantum transport and quantum optics. It is tempting to say the same about the
solutions of these models, but on several occasions we illustrate that this is not the case,
even if the solutions can be written down analytically.

Here we briefly introduce the models discussed in this thesis. The general con-
nection between K and G derived in Chap. 3 is illustrated for two exactly solvable
models: the dissipative Jaynes-Cummings model [Sec. 3.4] and the fermionic finite tem-
perature resonant level model [Sec. 3.5]. The Jaynes-Cummings model provides one
of the most basic descriptions of atomic decay. Despite its algebraic simplicity it fea-
tures a well-characterized non-Markovian regime where the generator G has isolated
time-singularities, which represent one of the most challenging aspects of the time-local
framework and has been contemplated in many works [93–97].

The resonant levelmodel describes quantum transportwhile ignoring interaction and
complements the Jaynes-Cummings model – even though the generator is singularity-
free, the algebraic structure is more complicated due to the statistical mixing caused
by temperature. Despite the solution having been known for a long time, physically
interesting results, for example regarding its non-Markovianity, went unnoticed. Fur-
thermore, we recently noted that this simple model exhibits non-intuitive reentrant
behavior in time, where the level does not simply decay into a lower-lying Fermi-sea as
naively expected, but significantly fills up more before eventually decaying [1].

The general connection between time-local and time-nonlocal series expansions as
discussed in Chap. 4 and the renormalization group study presented in Chap. 5 are
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Chapter 1. Introduction 1.4. Analyzed models and their applications

illustrated at the example of an Anderson quantum dot [Sec. 4.3 and 5.4 respectively],
which properly describes transport in the presence of interaction. This model was orig-
inally proposed to investigate the conditions under which localized magnetic moments
form in bulk metals with magnetic impurities, but also accurately captures the physics
of quantum dots. Quantum dots are the workhorses of nanoscale electronics with a
variety of practical applications such lasers [98], solar cells [99] or displays [100] and are
also at the heart of proposed solid-state quantum computers [101]. The Kondo model
briefly discussed in Sec. 1.3 describes the low-energy sector of the Anderson model at
the particle-hole symmetric point [102].

When analyzing transient effects in the Anderson model in Chap. 5, we show that
the above-mentioned reentrant behaviour, that we first described for the non-interacting
resonant level model, survives both strong interaction and finite bias transport. This
transient effect seems to be generic and was overlooked so far making its experimental
investigation seem of interest. Moreover, we find that the short-time behaviour of
observables is temperature independent causing a collapse of the short-time data onto a
single T-independent curve. This observable effect reflects the key idea that thememory
time of the environment, governed by its temperature, is a natural quantity on which an
RG treatment of open system dynamics can be based.
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2

Theoretical background

This chapter provides the theoretical background and notation used throughout this
thesis. We first discuss the two canonical time-evolution equations introduced in the
previous chapter, the time-local and time-nonlocal QME. The following analysis of these
equations requires that we consider which type of superoperators are allowed as so-
lutions of these QMEs, in other words, the allowed mathematical form that a physical
evolution must take. With this in hand we will have a closer look at the subtle is-
sue of quantum Markovianity – a notion distinct from microscopic retardation. This
is important since the different viewpoints on what constitutes “memory” will play a
role later on. In particular, one of the standard simplifying strategies of approximating
open-system quantum evolutions is to enforce a simple type of quantum Markovianity
onto the dynamics (semigroup) by altering the QME. In the final section we discuss two
basic approximation strategies going beyond such crude approximations, which will be
important in later chapters.

2.1 | Propagators, master equations and physicality
In this thesis we consider a system S in the presence of an environment (also called
reservoir) R and assume throughout that at some initial time t0 the total state is given by
a product state ρtot(t0) = ρ0 ⊗ ρR . Typically statistics of local measurements performed
on the system, contained within the density operator ρ(t) := TrR ρtot(t), are of interest,
but later on we will also consider non-local observables, such as particle currents. The
dynamics of the densiy operator can be computed using the propagator Π(t, t0),

ρ(t) = Π(t, t0)ρ0 := TrR

{
Utot(t, t0) (ρ0 ⊗ ρR)U†

tot(t, t0)
}

. (2.1)
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Chapter 2. Theoretical background 2.1. Propagators, master equations and physicality

This is the open-system analog to the time evolution operator Utot(t, t0) for closed sys-
tems. The propagator Π(t, t0) maps arbitrary initial system states ρ0 for a given initial
reservoir state ρR.

A basic question to ask is which superoperators can represent physically meaning-
ful propagators, i.e., what is the open-system-analog to the unitarity requirement of
Utot(t, t0)? Clearly it is necessary that Π is trace- (TP) and positivity preserving (PP).
However, these conditions are not sufficient to guarantee physicality because they don’t
take entanglement into account: It is possible that the system S is initially correlated with
additional external degrees of freedom (labeled P), which neither evolve in time nor
interact with system and environment for t ≥ t0. Therefore, the actual initial state is
given by ρSP with marginal ρ0 = TrP ρSP and propagation is achieved via

ρ(t) = TrP {Π(t, t0)⊗ IP ρSP} . (2.2)

If S and P are not entangled, then by the separability of ρSP the positivity of the evolving
state is ensured if Π is PP. However, if S and P are entangled this is not the case and
one must demand that Π(t, t0) ⊗ IP is PP. Importantly this should hold for arbitrary
dimensions of P, which is precisely the definition of complete positivity (CP). Thus CP is
closely tied to the evolution of entanglement. Using the so-called Choi isomorphism [47,
103, 104] it is in fact easier to check whether a given propagator Π is CP than the weaker
and irrelevant PP property.

It might be at first surprising that the presence of a “blind and dead” witness [105]
P can enforce a requirement as strong as CP onto the dynamics. However, for initial
product states as we consider them, CP can be shown to follow from Eq. (2.1) [106]. We
note that in the case of initial system-environment correlations the possibility of defining
a CP propagator, mapping initial marginal states of S to their later values ρ(t), has been
controversially debated [105, 107, 108]. This was recently clarified by tracing back the
confusion to the issue of independently varying marginals of initially correlated states,
see Ref. [109] for a detailed exposition.

2.1.1 | Time-nonlocal master equation – Microscopic retardation
In investigating general properties of the propagator or when performing practical com-
putations it is typically advantageous to analyze the propagator’s equation of motion.
As was shown by Nakajima and Zwanzig [110, 111] using the projection-superoperator
technique, the propagator satisfies the time-nonlocal QME

Π̇(t, t0) = −i
∫ t

t0

dsK(t, s)Π(s, t0), (2.3)
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which can alternatively also be derived from diagrammatic arguments [23]. Typically
thememory kernelK(t, s) contains a time-local contributionKL(t) besides an inherently
time-nonlocal part KN(t, s):

K(t, s) = KL(t)δ̄(t− s) +KN(t, s). (2.4)

Here we use a δ̄(t) distribution defined such that
∫ t

0 δ̄(t− s) f (s) = f (t).
The above equations simplify for time-translation invariant systems, where the total

Hamiltonian Htot is constant and Utot(t− t0) is a function of the time difference only. It
then follows that Π(t− t0) andK(t− s) also become functions of a single time argument
and KL is time-constant. In this case (2.3) can be formally solved in frequency space:
defining the Laplace transform of the memory kernel

K̂(ω) := lim
t0→−∞

∫ t

t0

dsK(t− s)eiω(t−s) =
∫ ∞

0
dsK(s)eiωs (2.5)

and analogously for Π̂(ω), one obtains the “Green’s function” or resolvent for the density
operator

Π̂(ω) =
i

ω− K̂(ω)
. (2.6)

At first (2.5) is only defined for Imω > 0, because only here the integral formally
converges and Π̂ is an analytic function of ω. However, via analytic continuation one
can also extend the definition into the lower half of the complex plane, where interesting
features such as poles and branch cuts emerge, which correspond to exponential and
power law time-dependence of the dynamics.

From (2.6) it follows that fixed-point frequencies of K̂, i.e., frequencies ωp satisfying

K̂(ωp)|ωp) = ωp|ωp) (2.7)

for some eigenoperator1 |ωp), are the poles of Π̂. Transforming back to time-space via
integration along a clockwise oriented contour C closed in the lower half of the complex
plane, we obtain the general time-nonlocal structure of the time-evolution:

Π(t− t0) =
1

2π

∫
C

dωΠ̂(ω)e−iω(t−t0) (2.8a)

= ∑
ωp

Res
ω=ωp

[
e−iω(t−t0)

ω− K̂(ω)

]
+

i
2π

∫
b.c.

dω
e−iω(t−t0)

ω− K̂(ω)
. (2.8b)

1When interpreting operators Â as supervectors we use the notation |A) ≡ Â. The Hilbert-Schmidt
scalar product between two supervectors |A) and |B) is denoted by (A|B) := Tr{A†B }. This alsomotivates
the definition of dual maps (A|• := Tr{A†•}.
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Here the sum goes over all poles of Π̂(ω) and “b.c.” indicates integration over possible
branch cut contributions. In the simplest case, where K̂ itself is analytic and thus
branch cuts are absent, we can see that Π is given by a (possibly infinite) sum of pure
exponentials with time-constant superoperator-valued prefactors. Taking branch cuts
into account, which typically arise at zero temperature, these prefactors become time-
dependent. One should note that this is not an “exotic” feature, but already appears
in the simplest possible model of transient transport through a resonant level [Sec. 3.5].
This general picture forms the starting point for advanced approximation strategies such
as the real-time renormalization group (RTRG) [23] and the related E-flow scheme, see
Refs. [24, 27, 29, 30, 89, 92] for details and applications.

2.1.2 | Time-local master equation – Just a mathematical trick?
The time-convolution in the time-nonlocal QME (2.3) is for some considerations un-
desirable [1]. Therefore one idea is to transform (2.3) into an equivalent convolution-
less form. This can always be achieved [112, 113]: formally defining the generator
G(t, t0) := iΠ̇(t, t0)Π−1(t, t0), the time-local QME

Π̇(t, t0) = −iG(t, t0)Π(t, t0) (2.9)

holds by construction. We see that G(t, t0) generates Π(t, t0) in the same way as Htot(t)
generates Utot(t, t0), with the important difference that G(t, t0) is not hermitian and also
depends on the initial time t0 due to the presence of the environment. The formal
solution can thus be expressed as

Π(t, t0) = T← e−i
∫ t

t0
dτG(τ,t0), (2.10)

where T← denotes the time-ordering operator. For time-translation invariant systems
only the time difference t − t0 is relevant and G(t, t0) = G(t − t0). In this case the
generator typically converges at long times to a stationary value

G(∞) = lim
t0→−∞

G(t− t0), (2.11)

but we will also see very simple physical examples where this limit does not exist, even
though the propagator Π(t) converges to a well-defined stationary state Π(∞).

It is evident from the definition of the generator that it will contain singularities at
any time t∗ where Π(t∗, t0) is not invertible. Although this was noted a long ago [93], it
has recently received renewed attention [94–97]. Importantly, these singularities are not
spurious, noting that the product G(t, t0)Π(t, t0) always remains finite, even at t → t∗.
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In fact they are physically meaningful: by identifying the divergent matrix elements of
G(t∗, t0) one can already infer that certain parts of Π(t∗, t0)must vanish, which restricts
the physically allowed subspace through which every evolving density operator has to
pass at t = t∗. This subspace restriction can be so severe that Π(t∗, t0) becomes an
entanglement breaking map [114–117], which we encounter in the model considered in
Sec. 3.4.

For many applications it is advantageous to decompose G into the so-called (time-
dependent) Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) [118, 119] form,

−iG(t, t0) • = −i[H(t, t0), •] + ∑
k

jk(t, t0)
(

Jk(t, t0) • J†
k (t, t0)− 1

2

{
J†
k (t, t0)Jk(t, t0), •

})
,

(2.12)

where • denotes some operator argument, H is an hermitian operator, jk are the real-
valued jumprates, and the jumpoperators Jk are traceless andorthonormal, (Jk|Jk′) = δkk′ .
Importantly the form (2.12) guarantees that trace and hermicity are preserved during the
evolution, but it is an open problemwhich constraints on the time-dependent jump rates
and operators are necessary and sufficient to ensure complete positivity of the solution
Π(t, t0). Of course the exact generator always ensures CP of the dynamics, but this is
not necessarily the case if approximations or phenomenological ad-hoc constructions
are made. However, in the special case where jk(t, t0) ≥ 0, which will be important
in the next section, it is established that CP is guaranteed [120]. This makes the GKSL
jump operator representation (2.12) important for direct phenomenological modeling of
experiments. The guaranteed physicality is also exploited in stochastic simulations [121].

2.2 | Quantum Markovianity
One of the central themes in the analysis of open quantum systems is the understanding
of memory effects – roughly speaking, whether there is a backaction of the environment
onto the system or not. Even though the distinction between Markovian (no backac-
tion) and non-Markovian systems is rather fundamental, its discussion is typically not
straightforward because different well-motivated definitions are used depending on the
interests of involved communities [16, 18, 122]. A related question is how and under
what conditions memory effects can be neglected within Markov approximations, and
how systematic improvements beyond them can be made.
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2.2.1 | Semigroup Markovianity
At the heart of the problem of how to clearly define “quantum Markovian” is that the
classical definition of a stochastic Markov process can not be easily generalized into the
quantum realm [18, 50]: A classical stochastic process X(t) is called Markovian if the
conditional probabilites satisfy

p
(

X(t) = x
∣∣∣X(tn) = xn, . . . , X(t1) = x1

)
= p

(
X(t) = x

∣∣∣X(tn) = xn

)
(2.13)

for all t > tn > · · · > t1. Roughly speaking, this means that even though the
observable was measured n times, in order to make predictions we only need the
latest measurement at time tn. All other measurements at earlier times t1, . . . , tn−1

can be discarded and, therefore in this sense, there is clearly no memory. In the
quantum case, however, every measurement would disturb the system and therefore
p
(
X(t) = x

∣∣X(tn) = xn, . . . , X(t1) = x1
)
would not only depend on the dynamics, but

also on the choice of measurement process.
One way to proceed is to focus on the classical one-point probabilities p(X(t) = x)

instead [18]. These are “propagated” via stochastic transition matrices T(x, t|x0, t0) such
that p(X(t) = x) = ∑x0

T(x, t|x0, t0)p(X(t0) = x0). For the special case of a classical
Markov process these transition matrices satisfy

T(x, t|x0, t0) = ∑
x1

T(x, t|x1, s)T(x1, s|x0, t0) for all t ≥ s ≥ t0. (2.14)

In the most straightforward generalization to the quantum case one can say that if

Π(t− t0) = Π(t− s)Π(s− t0) for all t ≥ s ≥ t0 (2.15)

then the dynamics is called semigroup Markovian. The functional relation (2.15) is
uniquely solved by exponentials with some time-independent generator G̃:

Π(t− t0) = e−i(t−t0)G̃ . (2.16)

It is well known that (2.16) is physical (CPTP) if and only if the generator G̃ has the GKSL
form (2.12) with time-constant jump operators Jk and Hamiltonian H and time-constant
non-negative jump rates jk ≥ 0 [118, 119]. This is called a semigroup because one can
associatively compose propagators of the form (2.16) viamultiplication, but by taking the
inversewe leave the set of physical propagators (even though the inversemathematically
exists, it is known never to be CP unless Π is unitary).

Clearly, the exact propagator of an open quantum system, either expressed using
the memory kernel [Eq. (2.8)] or the time-local generator [Eq. (2.10)], is not typically

16



Chapter 2. Theoretical background 2.2. Quantum Markovianity

of the semigroup form (2.16). It might, however, be well approximated by a simple
exponential e−i(t−t0)G̃ in certain time intervals. Therefore it is an important issue how
a suitable G̃ can be constructed. Within the time-local approach one argues that non-
Markovian behaviour typically occurs at short times, because G(t − t0) is converging
quickly towards its stationary value G(∞). Hence the idea of theMarkov approximation
is to replace G(t− t0)→ G(∞) from the start:

ρ̇(t) ≈ −iG(∞)ρ(t). (2.17)

In the time-nonlocal approach one typically identifies Markovianity with a fast decay
of the memory kernel K(t). In this case extending the lower integration bound in (2.3)
to t0 → −∞ gives a negligible error. Additionally one replaces ρ(s) → ρ(t) under the
integral, arguing thatK(t− s) ≈ 0 if t− s exceeds some short “memory time” set byK:

ρ̇(t) ≈ −i
∫ t

−∞
dsK(t− s)ρ(t) (2.18a)

= −iK̂(0)ρ(t). (2.18b)

Thus in this approach the zero-frequency memory kernel K̂(0) is taken as the semigroup
generator. From this point of view it is often argued that any approximation involving
finite frequencies must account for “non-Markovian” behaviour [31, 41, 42, 123, 124].

Based on the typical language used, which talks about performing “the” Markov
approximation as if this was a unique procedure, one may get the impression that the
two canonical semigroup generators G(∞) and K̂(0) should obviously coincide. Indeed,
both objects are physically well-motivated and seem to encode similar ideas just in
a different formulation. We will get back to this question and the relation between
“memory”, either understood as a Markovian semigroup or as retardation/frequency
dependence of the memory kernel, in Sec. 3.2.1.

2.2.2 | Markovianity as divisibility
The issue of Markovianity, however, is even more complex. Even though the semigroup
dynamics (2.16) introduced long ago certainly represent the strongest form of Marko-
vianity, it was only recently argued that this constraint is perhaps too strong – many
evolutions that are not semigroups seem to “behave Markovian” anyway [16–18, 43–45].
One extension of the concept of semigroup Markovianity focuses on divisibility, a view
whichwewill adopt in this thesis. Fromhere onwe say thatΠ(t, t0) is quantumMarkovian
if and only if there exists a physically legitimate (CPTP) divisor Π(t, s|t0) such that

Π(t, t0) = Π(t, s|t0)Π(s, t0) for all t ≥ s ≥ t0. (2.19)
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This condition is referred to as CP divisibility and also reduces to (2.14) in the classical
case [18]. The divisor maps states ρ(s) = Π(s, t0)ρ0 from intermediate times s to later
times t > s, ρ(t) = Π(t, s|t0)ρ(s). Importantly, the divisor can always be defined as

Π(t, s|t0) := Π(t, t0)Π−1(s, t0), (2.20)

but it is not always CP (since Π−1 is not).
From the somewhat abstract definition of quantum Markovianity as divisibility it

is not immediately clear in which sense the dynamics is memoryless. This however
becomes clear in the following ways:

� Due to Stinespring’s theorem [125] a CP divisor can be considered to arise from a
unitary U′tot applied to the product state2 • ⊗ ρR′ ,

Π(t, s|t0) • = TrR′
{

U′tot(t, s|t0) • ⊗ρR′U′tot
†
(t, s|t0)

}
, (2.21)

whereU′tot(t, s|t0) and ρR′ are in general different fromUtot(t, t0) and ρR in Eq. (2.1).
This means that even though during the evolution correlations are building be-
tween system and environment, at any time s one can effectively “interrupt” the
dynamics discarding all the correlations, and then restart from the product state
ρ(s)⊗ ρR′ using the divisor evolution producing the state ρ(t) at time t as if nothing
happened. According to this precise operational specification, correlations caused
by past system-environment interactions can be “forgotten” and the evolution is
“memoryless”. Differently put, it is possible to simulate the dynamics as if there
were no time correlations at all.

� There is an instructive equivalent perspective from the quite different vantage
point of quantum estimation. Assume that with probability p the system S was
prepared in a state ρ

(1)
0 , and with probability 1 − p in the state ρ

(2)
0 . We take

into account that mixed states of S can always be prepared using an entangled
system P of the same size, which is not evolving by itself, such that ρ

(i)
0 = TrP ρ

(i)
SP.

Thus SP is described by ρ
(i)
SP(t) := Π(t, t0) ⊗ IP ρ

(i)
SP. At time t we perform a

measurement to find out which initial state on SP was prepared (this is called a
one-shot, two-state discrimination problem). One can show [18] that using the best
possible measurement the probability to successfully determine the state is given
by (1 + ‖∆(t)‖1)/2, where

∆(t) = pρ
(1)
SP (t)− (1− p)ρ(2)SP (t) (2.22)

2Stinespring’s theorem allows to chose a pure state ρR′ . Since all pure states on R′ are related to
each other by unitaries, we can actually chose an arbitrary pure ρR′ independent of s and t0 and redefine
U′tot(t, s|t0) accordingly.
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denotes the Helstrom matrix [126] and ‖A‖1 := Tr
√

A† A the trace norm. Here
‖∆(t)‖1 gives the probability bias towards one of the states, and is thus a measure
of the information in SP understood as distinguishability. If ‖∆(t)‖1 decreases as a
function of time, we interpret this as information flowing from the system SP into
the environment, since we loose the ability to distinguish in SP. If ‖∆(t)‖1 instead
increases then information must be flowing from the environment back into the
system SP. This is another well-defined memory effect and motivates calling the
dynamics non-Markovian. The precise equivalence to the notion of divisibility
was worked out in Refs. [95, 127], where it was shown that ‖∆(t)‖1 decreases
monotonically for arbitrary pairs of initial states ρ1,2

SP if and only if the dynamics is
CP divisible3.

Whether an evolution isCPdivisible or not turns out to be straightforwardly encoded into
the generator: the divisor is CPTP, and thus the evolution is quantumMarkovian, if and
only if all time-dependentGKSL jump rates in Eq. (2.12) are non-negative, jk(t, t0) ≥ 0 for
all t [43]. Despite this important advance of understanding the properties of quantum
evolutions, it is still not knownwhat conditions on the more accessiblememory kernel are
equivalent to CP divisibility. This provides another key motivation for investigating the
connection between the memory kernel and the generator.

2.3 | Beyond semigroup Markov approximations
Even though GKSL semigroups (2.16) are often used in phenomenological construc-
tions because of their mathematical simplicity and guaranteed physicality, we will see
explicitly in the models considered in Sec. 3.4–3.5 that they only arise in rather extreme
limits when deriving dynamics microscopically. In this case one can typically not find
exact solutions for the more complex models of interest and is therefore forced to rely
on approximations. Here we want to introduce the ideas of some commonly used ap-
proximation strategies for going beyond semigroups which are explored in this thesis.

2.3.1 | Initial slip corrections

A very simple procedure aiming to improve semigroup Markov approximations is the
so-called slippage of the initial condition [128–131], inwhichone tries tofinda semigroup

3In Ref. [127] the technical assumption of invertible propagators Π for all times t was needed. In Ref. [95]
the discussion was extended to the mathematically more involved case of non-invertible propagators.
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Figure 2.1. Comparison between the exact decay if the occupation 〈1|ρ(t)|1〉 (black) and
a semigroup approximation with (blue) and without (green) initial slip correction in the
Jaynes-Cummings model (see Sec. 3.4) with Γ = 0.3γ.

generator G̃ and an initial slip superoperator S , which need not be a CP map, such that

Π(t− t0) ≈ e−i(t−t0)G̃S . (2.23)

The idea behind this approximation is that often long-time dynamics are well-described
by a semigroup, and non-semigroup corrections only contribute significantly at short
times. Thus one tries to capture more of the fast early dynamics by slipping the initial
condition ρ0 → Sρ0. Clearly this ansatz may violate complete positivity at short times
(since Π(t0) = S 6= I) and one can therefore merely hope to lower the time-scale at
which the semigroup becomes accurate.

The striking impact that a slip correction can have on a semigroup approximation is
illustrated in Fig. 2.1: Herewe show the decay of an excited atom into the ground state as
described by the Jaynes-Cummings model, which is introduced in detail in Sec. 3.4. For
the chosen parameters, the dynamics is quantum Markovian but not well-described by
a semigroup except at very long times. Although the slip-corrected semigroup also fails
to describe the short-time behaviour, even violating positivity until tγ ≈ 2, it already
lies on top of the exact solution at intermediate times tγ ≈ 4. The semigroup achieves
the same error only much later at tγ ≈ 10.5.

Interestingly, these slip-corrected semigroups, typical for the time-local approach,
can be naturally constructed bymaking use of the time-nonlocal structure of the solution
(2.8b), which we explored in more detail in a separate publication [3]: starting from the
eigendecompositionK(ω) = ∑i ki(ω)|ki(ω))(k̄i(ω)|weselect d2 fixed-point frequencies
ωp satisfying kiωp

(ωp) = ωp [Eq. (2.7)] and label the corresponding right eigenvectors
for simplicity as |ωp) ≡ |kiωp

(ωp)) (d denotes the dimension of the Hilbert space).
This selection of poles {ωp} has to be made such that (i) it contains zero (to guarantee
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Chapter 2. Theoretical background 2.3. Beyond semigroup Markov approximations

the existence of a stationary state) (ii) it is symmetric with respect to the imaginary
axis (to guarantee hermicity preservation of the approximation) and (iii) the set of
right eigenvectors {|ωp)} are linearly independent. The last assumption allows one
to construct a dual basis {(ω̄p|} satisfying (ω̄p|ωp′) = δpp′ via biorthonormalization,
which will be different from the set of left eigenvectors {(k̄iωp

(ωp)|} of the memory
kernel. Assuming for simplicity that all the selected poles ωp are of first order and
neglecting all the non-selected poles and branch cut contributions in Eq. (2.8b), we
obtain the approximation

Π(t− t0) ≈∑
ωp

e−iωp(t−t0)

1− ∂kiωp
∂ω

∣∣∣
ωp

|ωp)(k̄iωp
(ωp)| (2.24a)

=

[
∑
ωp

e−iωp(t−t0)|ωp)(ω̄p|
] [

∑
ωp

1

1− ∂kiωp
∂ω

∣∣∣
ωp

|ωp)(k̄iωp
(ωp)|

]
(2.24b)

=e−i(t−t0)G̃S . (2.24c)

with the semigroup generator G̃ := ∑ωp
ωp|ωp)(ω̄p| and the initial slip superoperator

S = ∑
ωp

1

1− ∂kiωp
∂ω

∣∣∣
ωp

|ωp)(k̄iωp
(ωp)|. (2.25)

Thus, an important insight is that finite frequency contributions from K̂ enter into the
construction of G̃ and S . However, it is at this point completely unclear whether G̃ is
connected in a simple way to the stationary generator G(∞) or the low-frequency kernel
K̂(0) [Eqs. (2.17)–(2.18)]. Also, the selection of poles even with the above mentioned
constraints seems to leave a lot of freedom. The results presented in Sec. 3.2.2 will
completely resolve all these points.

2.3.2 | Perturbation theories
A standard approach to obtain systematic approximations to the dynamics is to compute
a perturbative expansion in (an ideally small) parameter. Semigroups then often arise in
leading order, combined with special limits of physical parameters (high temperature,
high voltage, etc.). One thus needs to go beyond semigroup approximations whenever
higher-order corrections cannot be neglected or parameters are not fine-tuned to these
special limits. In the context of QMEs describing transport, one typically expands in
the tunnel coupling Γ between quantum dot and environment. This is in contrast to
Green’s function techniques, where one instead expands in the Coulomb interaction U
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Chapter 2. Theoretical background 2.3. Beyond semigroup Markov approximations

of a quantum dot. Using perturbative QMEs it is thus possible to treat all parameters of
the local system’s Hamiltonian non-perturbatively, which is important, for example, in
typical quantum dot systems where the Coulomb interaction can be large.

A straightforward way to derive series expansions of Π, K or G is the Nakajima-
Zwanzig projection operator technique [110, 111]. This was first applied to derive
expressions for the propagator Π and the memory kernel K and later extended to the
time-local generator G [34–36]. In Chap. 4–5 of this thesis we will instead use an equiv-
alent diagrammatic approach, which originated in the study of quantum transport [23,
132–134] and is based on Wick’s theorem. In this approach the memory kernel K nat-
urally appears as the sum over all connected diagrams, but it has remained unclear
how the generator G can be expressed using the same building blocks. Importantly, the
traditional derivation of G [34–36] does not allow to pin this down. The diagrammatic
language turns out to be vital for more advanced schemes going beyond the simple bare
perturbation theory. For example, a renormalized perturbative memory kernel expan-
sion valid for a large class of fermionic models was derived in Refs. [135, 136], where
one expands around the high-temperature limit T → ∞ instead of the decoupled limit
Γ → 0, and thereby already includes dissipative behavior into the reference solution.
This in turn led to the discovery of the non-perturbative fermionic duality [137, 138],
an exact “dissipative symmetry” cross-relating different eigenvalues and -vectors of the
exact, finite T memory kernel and propagator in a simple fashion.

An important fact that is often overlooked is that perturbative series for Π, K and G
are not equivalent. Computing the n-th order approximations Π(n), K(n) and G(n) in the
same parameter and subsequently solving the corresponding master equations

Π̇(n)
K (t, t0) = −i

∫ t

t0

dsK(n)(t, s)Π(n)
K (s, t0), (2.26a)

Π̇(n)
G (t, t0) = −iG(n)(t, t0)Π

(n)
G (t, t0), (2.26b)

one finds that the approximate solutions generally differ, Π(n) 6= Π(n)
K 6= Π(n)

G . As a
result, it is difficult to compare results obtained in different research communities which
exclusively use either one or the other approach. The solutions can even be qualitatively
different. As a trivial example, the directly computed propagator Π(n) often suffers from
unphysical secular terms growing as O(Γntn), which typically do not appear in Π(n)

K
or Π(n)

G . We will address the highly non-trivial comparison between Π(n)
K and Π(n)

G in
Chap. 4 and advance the understanding of the pros and cons of these expansions by
deriving the representation of G within the same diagrammatic language as for K.
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3

Generators as fixed points
of memory kernel functionals

As we have seen in Chap. 2, there are two exact but distinct quantum master equation
approaches to the dynamics of an open quantum system: the first uses a time-nonlocal
memory kernel K, whereas the second produces the same evolution using a time-local
generator G. As discussed, the memory kernel K is advantageous for advanced approx-
imation schemes, whereas the time-local generator G provides more subtle insights, e.g.,
about the Markovianity (divisibility) of an evolution.

In this chapter we are concerned with the general relationship between K and G,
which has already been investigated for time-translation invariant systems in the sta-
tionary limit t0 → −∞. Refs. [31, 41, 42] discussed this relation using a memory
expansion, i.e., a gradient / Moyal expansion [139–141] in the time-domain applied to
the density operator. Similar expansions are well developed [142, 143], e.g., for Wigner-
and Green-functions [140, 141]. The mentioned works indicated that the naive physical
intuition, that the long-time limit of QME (2.9) is equivalent to the low-frequency ap-
proximation to QME (2.3), is wrong: The stationary generator G(∞) does not coincide
with the zero-frequency limit K̂(0) of the (Laplace-transformed) memory kernel. As
a result, “natural” Markovian semigroup approximations set up within approach (2.3)
or (2.9), using the exact K̂(0) or G(∞) respectively, turn out to be distinct. This differ-
ence has proven to be important in perturbative studies beyond weak coupling [31, 41,
42], and is even crucial for measurement backaction [123, 124]. From these studies the
difference between K̂(0) and G(∞) appears to be very complicated. Pinning down this
relation also ties in with the much broader [122] discussion of non-Markovianity, where
the interesting connection between divisibility, statistical discrimination [16, 19, 144] and
information flow [17–19, 120, 145–147] continues to be developed [22, 148].

A further important step in clarifying this issuewas provided by the proof in Ref. [39]
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that K̂(0) and G(∞), despite their difference, both have the exact stationary state as
a right zero eigenvector. However, this work was restricted to master equations for
probabilities (not including coherences) and also left unanswered the relation between
the full eigenspectra of G(∞) and K̂(ω), which is one of several results established
in this chapter. Such relations are of interest since these eigenspectra enter as input
into advanced calculations of their dynamics [27, 29, 30] and provide insight into the
time-evolution [149], just as the eigenspectra of Hamiltonians do for the evolution of
closed systems. Similar exact relations among the eigenvectors of the memory kernel
K proved to be very useful for simplifying the complicated calculations for strongly
coupled, strongly interacting quantum dots far out of equilibrium [3, 135, 137].

Thus, it is a pressing question how the time-local generator is related to the time-
nonlocal memory kernel for a general finite-dimensional open quantum system. The
central result of this chapter established in Sec. 3.1 is that this relation takes the surpris-
ingly simple form of a functional fixed-point equation G(t, t0) = K̂[G](t, t0). Importantly,
it applies to transient dynamics and allows for arbitrary driving. In Sec. 3.2 we explore
the implications for time-translation invariant systems in the long time limit, where the
stationary generator becomes the fixed point of a simpler function of superoperators,
G(∞) = K̂(G(∞)). This leads to the key insight that G(∞) “samples” the memory
kernel K̂(ω) at a finite number of frequencies. This completely defines G(∞) and sig-
nificantly simplifies the connection between the mentioned distinct semigroup Markov
approximations. The sampled frequencies are shown to be exact time-evolution poles
of the Laplace space propagator Π̂(ω), well-known from the time-nonlocal approach
[Eq. (2.6)]. The transformation connecting eigenvectors of G(∞) and K̂(ω) is found to be
related to the initial-slip correction procedures introduced in Sec. 2.3.1. Furthermore, we
show that both the stationary and the transient fixed-point equation are self-consistent
expressions for the solution of the memory expansion discussed in Refs. [31, 41, 42]
by explicitly constructing and summing this series. In other words, by computing all
corrections accounting for “memory” in one approach, one obtains the “memoryless”
approximation of the other, underlining the need for our quantitative connection.

In Sec. 3.3 we show that the fixed-point equation can be turned into two separate
iterative numerical approaches for obtaining the transient and the stationary generator,
respectively, from a given memory kernel. This provides a new starting point for hybrid
approaches in which the results of advanced time-nonlocal calculations [24–27] can be
plugged into the time-local formalisms directly, bypassing the solution Π(t, t0) that ties
Eqs. (2.3) and (2.9) together. Ref. [26] numerically addressed the converse problem of
extracting K from an evolution generated by G, which analytically seems to be more
complicated.
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Finally we explicitly illustrate the derived relations between K and G on two nonper-
turbative examples. First, we address the exactly solvable dissipative Jaynes-Cummings
model [20, 93, 150, 151] in Sec. 3.4 and show how the developed iteration schemes deal
with nontrivial singularities of G(t, t0) in time. Second, the fermionic resonant level
model with its richer time-dependent algebraic structure is discussed in Sec. 3.5 and fur-
ther showcases the nontrivial connection between a time-local and nonlocal description.

3.1 | Functional fixed-point relation
By definition the generator G(t, t0) and the memory kernel K(t, s) are related by the fact
that they produce the same dynamics Π(t, t0) [Eq. (2.1)]. To derive a direct relation we
start from the time-local QME for the propagator (2.9), from which the generator can be
obtained as

−iG(t, t0) = Π̇(t, t0)Π(t, t0)
−1. (3.1)

As mentioned in Sec. 2.1.2 there may be singular time points, which we will encounter
in the model considered in Sec. 3.4. Inserting the equivalent time-nonlocal QME (2.3)
into equation (3.1) gives

G(t, t0) =
∫ t

t0

dsK(t, s)Π(s, t0)Π(t, t0)
−1. (3.2)

The key step to connect these two approaches is to recognize the expression for the divisor
[Eq. (2.20)], which we encoutered when discussing quantum Markovianity. The divisor
obeys the same time-local QME as the propagator, dΠ(t, s|t0)/dt = −iG(t, t0)Π(t, s|t0),
with different initial condition Π(s, s|t0) = I for all s ∈ [t0, t]. The inverse of its formal
solution,

[Π(t, s|t0)]
−1 = T→ei

∫ t
s dτG(τ,t0) for t0 ≤ s ≤ t, (3.3)

involves anti-time-ordering denoted by T→. Inserted into Eq. (3.2) we find the key result

G(t, t0) = K̂[G](t, t0). (3.4)

The time-local generator is a fixed point of a functional which maps a superoperator
function of time X(t, t0) to another such function:

K̂[X](t, t0) :=
∫ t

t0

dsK(t, s)T→ei
∫ t

s dτX(τ,t0). (3.5)
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This functional is closely related to the ordinary Laplace transform (2.5) of the memory
kernel K(t− s), to which it reduces for constant c-number functions of time X = ωI in
the limit t0 → −∞ for time translational systems. We already note that the functional
K̂[X] may have fixed points other than X = G. The nonuniqueness and stability of fixed
points are further discussed in Sec. 3.4–3.5 for two specific models.

In Fig. 3.1 we graphically outline this derivation. This highlights that time-local
propagation with G needs to be consistent with time-locally evolving backward with G
and time-nonlocallypropagating forwardwith thememory kernel. We stress that Eq. (3.4)
is a transformation between two complementary descriptions of the same dynamics. It
thus also applies to approximate dynamics Π′ generated equivalently by some K′ and G ′,
and thus has broad applicability.

(a)

(b)

(d)(c)

Figure 3.1. Graphical representation of the derivation of the functional fixed-point
equation (3.4). (a) Equivalent expressions for Π̇(t, t0) as given by the two QMEs. (b) In-
sertion of canceling backward and forward propagation to initial time t0. (c) Evolution
T← exp

(∫ t
t0

dτ[−iG(τ, t0)]
)
= limN→∞(I − iG(t1)∆t1) . . . (I − iG(tN)∆tN) expressed as

product of infinitesimal steps for the sake of illustration. (d) Backward propagation to
memory-time s expressed in terms of G using the divisor. The self-consistency expressed
by the functional fixed-point equation (3.4) arises from thebackwardpropagationneeded
to enforce the time-local structure of QME (2.9) onto the QME (2.3).

Equation (3.4) is explicitly consistent with trace-preservation, a fundamental prop-
erty of the dynamics. Due to the ordering in Eq. (3.5), where the kernel K stands to
the left of the exponential, the trace-preservation property of the kernel, TrK(t, s)• = 0,
implies the corresponding property of the generator, TrG(t, t0)• = 0. In fact, for any
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superoperator function X(t, t0) one has

Tr K̂[X](t, t0) = 0. (3.6)

Moreover, the connection between the hermicity-preservation property of the kernel and
thegenerator canalsobe easily checked: Since−iK(t)A = [−iK(t)A†]† = H[−iK(t)]HA
for any operator A, whereHA := A† is an antilinear superoperator, we have

H
{
− iK̂[X](t, t0)

}
H = −iK̂[−HXH](t, t0). (3.7)

3.2 | Stationary fixed-point relation
We now focus on the implications for time-translational systems in the stationary
limit and consider the case where the generator converges to a constant superopera-
tor G(∞) = limt0→−∞ G(t− t0). Using the fixed point relation (3.4) we find

G(∞) = lim
t0→−∞

∫ t

t0

dsK(t− s)T→ei
∫ t

s dτG(τ−t0) (3.8a)

=
∫ t

−∞
dsK(t− s)ei(t−s)G(∞) (3.8b)

We don’t prove rigorously the mathematically non-trivial convergence of (3.8a) to the
limit (3.8b), which is instead physicallymotivated by the observation that typically either
the generator has already become stationary, G(τ − t0) ≈ G(∞) (τ ≥ s � t0), or the
memory kernel has already decayed (t � s), thus suppressing the expression. Hence
we obtain the stationary fixed-point equation

G(∞) = K̂(G(∞)). (3.9)

Compared to (3.5) the right hand side features themuch simpler extension of the Laplace
transform (2.5) with frequency ω replaced by the time-constant superoperator X:

K̂(X) :=
∫ ∞

0
dsK(s)eisX. (3.10)

In contrast to the ordinary Laplace transform (2.5) it is crucial that the exponential
appears to the right of the memory kernel, since in general [K(s), eisX] 6= 0.
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3.2.1 | Exact sampling relation between spectral decompositions
The stationary fixed-point equation (3.9) immediately makes clear that in general the
stationary generator G(∞) is not the low-frequency limit of the memory kernel, K̂(0).
We now make precise which parts of the frequency dependence of the memory kernel
K̂(ω) matter in the stationary limit. To this end, assume that one can diagonalize
the stationary generator G(∞) = ∑i gi|gi)(ḡi|, and denote the distinct left and right
eigenvectors to the same eigenvalue gi by (ḡi| and |gi) respectively, which satisfy the
Hilbert-Schmidt biorthogonality relation (ḡi|gi′) = δii′ . Insertion into Eq. (3.9) gives
G(∞) = ∑i K̂(gi)|gi)(ḡi| with the ordinary Laplace transform (2.5) evaluated at ω = gi.
Focusing on nondegenerate eigenvalues we therefore have

K̂(gi)|gi) = G(∞)|gi) = gi|gi). (3.11)

Diagonalizing the kernel after Laplace transforming, K̂(ω) = ∑j k j(ω)|k j(ω))(k̄ j(ω)|,
this implies that at designated frequencies ω = gi one of its eigenvalues, labeled j = fi,
must coincide with an eigenvalue gi of the stationary generator G(∞):

k fi(gi) = gi. (3.12)

The right eigenvectors can then be normalized to coincide

|k fi(gi)) = |gi). (3.13)

Importantly the eigenvectors of the kernel |k j(ω)) can also contain poles, which have
an important impact on the evolution as illustrated explicitly in Sec. 3.5. However, since
G(∞) was assumed to be finite it can not sample any of these eigenvector poles of the
kernel.

Wenote that the left eigenvectors (ḡi| and (k̄ fi(gi)| in general differwith one important
exception, labeled by i = 0: From the trace-preservation property of the dynamics [see
Eq. (3.6)] it follows that both G(∞) and K̂(ω) at every frequency ω have the left zero
eigenvector (1| = Tr •, the trace functional. The corresponding zero eigenvalue is
denoted by g0 = k0(ω) = 0 for all ω labeling f0 = 0. Thus, a nontrivial consequence of
Eq. (3.11) is that the associated right zero eigenvectors of G(∞) and K̂(0), respectively,
coincide with the stationary state:

|g0) = |k0(0)) = |ρ(∞)). (3.14)

This generalizes the result of Ref. [39], which proved this statement for probability
vectors evolving with a time-local master equation (i.e. for probabilities only).
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We summarize the key result of this section: For Hilbert-space dimension d the
stationary time-local generator, with its finite set of eigenvalues g0, . . . , gd2−1, can be
written as

G(∞) =∑
i

k fi(gi)|k fi(gi))(ḡi|. (3.15a)

It “samples” one term of the Laplace-transformed memory kernel at each of the frequen-
cies ω = g0, . . . , gd2−1:

K̂(gi) = k fi(gi)|k fi(gi))(k̄ fi(gi)|+ ∑
j 6= fi

k j(gi)|k j(gi))(k̄ j(gi)|. (3.15b)

From each sampled frequency only a single right eigenvector |k fi(gi)) for one specific
eigenvalue satisfying k fi(gi) = gi is needed to construct G(∞). Importantly, its left eigen-
vectors (ḡi| are determined by the right ones through the biorthogonality constraint.

We already note that some intuitive ideas turn out to be incorrect: First, the sampling
formula shows that in general nonzero frequencies of K̂(ω) may matter at stationarity.
This makes precise that “memory”, often understood as retardation or frequency de-
pendence of the kernel [31, 41, 42, 123, 124], is in general not the same as “memory”
defined by aMarkovian semigroup [17, 18, 43, 118, 119], in which G(∞) naturally appears.
Second, the sampled frequencies gi need not be the eigenvalues with the smallest decay
rates [−Imk j(ωp)], which we will see in the examples discussed later.

The sampling formula (3.15) implies that the analytical calculation of the typically
more complicated quantity G(∞) can in principle be reduced to the calculation of K̂(ω)

at just d2 specific frequencies. We will show in Sec. 3.3 how G(∞) can be iteratively
computed from K̂(ω), thus determining which frequencies are actually sampled. It is
therefore not necessary to compute the transient generator G(t) in order to compute
G(∞). This is a significant advance since K̂ can be approximated accurately for com-
plicated many-body dynamics using well-developed techniques [23, 24, 27, 29, 30]. As
mentioned, our relations remain valid when dealing with such approximate kernels:
they are simply a way to change from a time-nonlocal to a time-local representation.

3.2.2 | Exact time-evolution poles
We now compare the sampling relations (3.15) with the formal exact solution (2.8)
for time-translational systems obtained by the resolvent method: As we have seen in
Sec. 2.1.1 each eigenvalue of K̂ satisfying ωp = k j(ωp) for some ωp represents a pole of
Π̂(ω). Hence by our result (3.12) the eigenvalues of G(∞) are guaranteed to be included
among these eigenvalue poles of Π̂(ω). Thus, our stationary fixed-point equation (3.9)
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reveals how the time-local approach keeps track of these characteristic frequencies of
the evolution, which are explicit in the time-nonlocal approach.

In other words, for time-translational systems the relation G(∞) = K̂(G(∞)) es-
tablishes that the time-local generator G(∞) is a superoperator-valued characteristic
“frequency” of the evolution. To be sure, there are further contributions from non-
sampled poles and branch cuts, which can be infinitely many and may also involve the
eigenvectors [24]. These are encoded in the transient fixed-point equation (3.4) through
the anti-time-ordered integration (3.5). Thus, the eigenvalues of G(∞) generally do not
exhaust all the eigenvalue poles of Π̂(ω). Which of the eigenvalues of K̂(ω) satisfying
ωp = k j(ωp) are eigenvalues of G(∞) is not apriori clear.

Our result (3.15a) now reveals that the first contribution to the exact dynamics (2.8a)
actually contains a Markovian semigroup generated by G(∞), which is however already
corrected by a slippage S :

Π(t− t0) = e−i(t−t0)G(∞)S + . . . (3.16)

Here . . . denotes the above mentioned non-sampled contributions and S is constructed
as in Eq. (2.25) using all the eigenvalues of G(∞):

S = ∑
i

1

1− ∂k fi
∂ω

∣∣∣
gi

|gi)(k̄ fi(gi)|. (3.17)

3.2.3 | Nonperturbative semigroup approximations

We can now address the puzzling issue regarding the more basic approximation strate-
gies that we mentioned in the introduction [Sec. 2.2.1]: The equivalent QMEs (2.3) and
(2.9) “naturally” lead to semigroup approximations which differ, even when constructed
from the exact G and K.

(i) Stationary generator G(∞): Assuming that the generator converges to a stationary
value G(∞)we can try to approximate the time-localQMEas a semigroup as in Eq. (2.17).
This idea underlies Refs. [41, 42] andmotivated the direct calculation of G(∞) by a series
expansion in the coupling in Ref. [39]. The resulting approximate dynamics has an
interesting feature: There are many evolutions for which the asymptotic generator G(∞)

has a GKSL form [118, 119] with nonnegative jump rates, which guarantees that the
approximation is completely positive in addition to trace preserving. Nonperturbative
approximations preserving both these properties are notoriously difficult to construct,
especially starting from microscopic models [47, 152–154]. Here the class of evolutions
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goes beyond semigroups by including all CP-divisible evolutions, but also allowing for
certain non CP-divisible ones1.

Our sampling result (3.15) furthermore shows that the exact solution as obtained
using the time non-local approach naturally contains the semigroup generated by G(∞)

together with an initial-slip correction S . Due to the automatic inclusion of S , the first
term of Eq. (3.16) is neither a semigroup nor a CP map around the initial time t0. This
may give faster convergence but also fail dramatically [3]. In contrast, the semigroup
approximation (2.17) does not suffer from such problems.

(ii)Low-frequencymemory kernel K̂(0). Starting instead fromthe time-nonlocal Eq. (2.3)
one obtains a semigroup generated by K̂(0) [Eq. (2.18b)]. This approximation is equiva-
lent toneglectingall frequencydependenceof thememorykernel, Π̂(ω) ≈ i/(ω−K̂(0)),
leaving only d2 eigenvalue poles ωj = k j(0). In contrast to G(∞), we know of no general
conditions that guarantee that K̂(0) generates a completely positive evolution for some
broad class of nontrivial models. Even when it is known that G(∞) has nonnegative
GKSL coefficients – ensuring that e−i(t−t0)G(∞) is completely positive – one still has to
explicitly check that the same holds for K̂(0). Although both approximations (2.17)
and (2.18b) nonperturbatively account for oscillation frequencies and decay rates in a
different way, it follows from the sampling result (3.13) that both converge to the exact
stationary state. Note, however, that G(∞) = K̂(0) is possible also for a non-semigroup
evolution, see Sec. 3.5.

3.2.4 | Summing the memory expansion

Whereas the argument leading to the semigroup Π ≈ e−i(t−t0)K̂(0) may be justified in
the weak coupling limit, it has been noted that when computing K̂ to higher order in
the system-environment coupling this becomes inconsistent [40–42, 156]. It was argued
that one should instead use a memory expansion, where not only the kernel K(t− s) is
expanded in the memory-time s relative to the current time t, but simultaneously the
propagator Π(s, t0) = Π(t, t0) − (t − s)∂Π(t, t0)/∂t + . . . under the memory integral
before taking the stationary limit. This way Ref. [41] obtained a semigroup with an
approximate generator

K̂(0) + ∂K̂
∂ω

(0) K̂(0). (3.18)

1Recall that Π is CP-divisible if G has nonnegative GKSL coefficients for all times t [Sec. 2.2.2]. By
contrast, Eq. (2.17) generates CP dynamics even if negative coefficients at finite times occur. Models where
the evolution has negative asymptotic GKSL coefficients have also been studied recently [22, 45, 155]

33



Chapter 3. Generator fixed points of memory kernels 3.3. Iterative construction of the generator

When computing K̂(0) to second order in, e.g., a tunnel coupling, the first order contri-
butions to the second term are comparable [41] and may lead to cancellations that are
necessary to respect complete positivity [123, 124]. In Ref. [42] the approximation (3.18)
was generalized to higher orders by applying partial integrations of the time-nonlocal
QME (2.9), which can be shown to be equivalent to further continuing the memory ex-
pansion of Ref. [41]. Thus, starting from the time-nonlocal QME one is led to a time-local
QME by the memory expansion.

Another key result of this chapter is that this memory expansion can in fact be
summed up to all orders [App. A]. One finds that the constant generator that ac-
counts for all memory terms is precisely the stationary time-local generator obeying
G(∞) = K̂(G(∞)), our stationary fixed-point equation (3.9). This means that our sam-
pling formula (3.15a) is the nonperturbative result of this series: The infinite sum of
memory terms – featuring all derivatives of K̂(ω) at zero frequency – can be condensed
into a finite sum of contributions of K̂(ω) at just d2 finite frequencies ω = gi.

One may roughly understand the equation G(∞) ≈ K̂(0) + ∂K̂
∂ω (0) K̂(0) as fol-

lows: to obtain G(∞) one linearizes the frequency dependence of the memory ker-
nel K̂(ω) ≈ K̂(0) + [∂K̂/∂ω(0)]ω and evaluates it at the characteristic “frequency”
ω = G(∞) ≈ K̂(0) of the system, which in first approximation is the low-frequency
kernel itself. This tentative picture is made rigorous by our fixed-point equation (3.9),
where the frequency is likewise replaced by a superoperator, but in a self-consistent way.

Furthermore, the memory expansion can not only be resummed in the stationary
limit t0 → −∞, but also for the full transient dynamics, thereby recovering the func-
tional fixed point equation (3.4) [App. A]. By making use of the divisor we can give a
closed formula for terms of arbitrary order [Eqs. (A.5), (A.8)]. We show how this ex-
pansion can be expressed in Moyal brackets [139, 157] with respect to time similar to
that used in Green’s function techniques [140, 141] in App. B. Altogether, this shows
that equations (3.4) and (3.9) are very useful for generating gradient expansions in time
when given a memory kernel K.

3.3 | Iterative construction of the generator
In this sectionwe show how the stationary and transient fixed-point equations [Eqs. (3.9)
and (3.4) respectively] may be turned into computational tools to obtain G from a given
memory kernel K. We focus on time-translational systems – setting t0 = 0 – and the
ideal situation where K has been computed accurately using a method of choice or is
even available exactly.
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3.3.1 | Iteration for the stationary generator

The simplest scenario is where one iteratively solves Eq. (3.9) to find G(∞) directly from
K(t) or K̂(ω), i.e., without considering the transient evolution Π(t) or the transient
generator G(t). Using the converged result one may then set up the nonperturbative
semigroup e−itG(∞) to approximate the full evolution Π(t).

First, consider the low-frequency kernel as an initial approximation to the generator,
G(0)(∞) = K̂(0), as in Eq. (3.18). If the exact dynamics is a semigroup, K(t) = K̂(0)δ̄(t)
and G(t) = K̂(0), then this already is the fixed point since G(1)(∞) = K̂(K̂(0)) = K̂(0).
This may also happen for non-semigroup evolutions (see Sec. 3.5). In general, further
approximations are obtained by n-fold iteration, G(n)(∞) = K̂

(
. . . K̂(K̂(0))

)
. Inspecting

the first iteration,

G(1)(∞) = K̂(K̂(0)) = ∑
j 6=0
K̂(k j(0))|k j(0))(k̄ j(0)|, (3.19)

we see that the stationary state |k0(0)) remains unaffected (trace-preservation), but in
general all j 6= 0 contributions are altered by the memory kernel evaluated at finite
frequencies, thus generating a difference between K̂(0) and G(∞).

The convergence of this procedure with n is certainly not obvious, but our first ap-
plications in Sec. 3.4–3.5 are encouraging. Indeed, one can consider starting the iteration
from any initial superoperator G(0)(∞) = X. In this case, property (3.6) guarantees
that the iteration trajectory G(n)(∞) = K̂

(
. . . K̂(X)

)
is confined to the linear space of

trace-preserving superoperators irrespective of X. If iX is hermicity-preserving, then
the trajectory will additionally be confined to such superoperators by property (3.7).

3.3.2 | Iteration for the transient generator

We next describe the more complicated iteration of the functional equation (3.4). Here
the aim is to construct the full transient generator G(t) starting from the memory kernel
K(t). As a preparation we decompose the kernel into its time-local (δ̄-singular) part
KL and a remaining time-nonlocal part KN as in Eq. (2.4). In addition to the system
Liouvillian L, the part KL may contain an environment-induced contribution (as for
fermionic wide-band models [135–137] as studied in Sec. 3.5), but this need not be the
case (as in the model studied in Sec. 3.4). Inserting Eq. (2.4) into the functional (3.5) we
obtain

G(n+1)(t) = KL +
∫ t

0
dsKN(t− s)T→ei

∫ t
s dτG(n)(τ). (3.20)
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Iterating this equation starting from the constant function G(0)(t) = K̂(0) gives ap-
proximations G(n)(t) which generate evolutions with two important properties at every
iteration:

First, each approximation is accurate at long times, provided G(t) has a stationary
limit and Eq. (3.4) converges to Eq. (3.9). Our choice of starting point ensures by Eq. (3.14)
that G(n)(t)|ρ(∞)) = 0 holds initially for n = 0, implying that the generated evolution
goes to the exact stationary state for t → ∞. This also holds for the next iteration,
G(n+1)(∞)|ρ(∞)) = limt→∞[KL +

∫ t
0 dsKN(t − s)]|ρ(∞)) = K̂(0)|ρ(∞)) = 0, using a

similar argument as in Eq. (3.8). This applies also for the starting point G(0)(t) = G(∞)

[Eq. (3.14)] or any starting point X for which X|ρ(∞)) = 0. However, starting from the
memory kernel formalism, K̂(0) is already available.

Second, each generated approximation is also accurate at short times. To see this,
note that at the initial time the generator is given by the time-local part of the kernel

G(0) = KL, (3.21)

which we split off from the generator,

G(t) = KL + GN(t), GN(0) = 0. (3.22)

The second term incorporates all effects due to the time-nonlocal part of the kernel
KN(t). For the first iteration we have

G(1)(t) = KL +
∫ t

0
dsKN(t− s)eiK̂(0)(t−s) (3.23a)

≈ KL + tKN(0) + . . . (3.23b)

as dictated by the short-time limit of the time-nonlocal part of the memory kernel.
This implies that in the exponential of the next iteration we similarly have at short
times

∫ t
s dτG(1)(τ) ≈ (t − s)KL, giving the same leading behavior. Thus, each itera-

tion n ≥ 1 coincides with the exact initial generator (3.21) including the linear order,
G(n)(t) = KL + tKN(0) + . . .. Clearly, no semigroup approximation can achieve this.

The convergence of this iteration is again not evident and an analysis of the local
stability is complicated due to the time-nonlocality of the superoperator equations.
Remarkably, we numerically find for several models that this procedure can be made to
work, evenwhen the generator is time-singular [Sec. 3.4] or has time-dependent algebraic
structure [Sec. 3.5].
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3.4 | Application: Atomic decay in a radiation field
We first illustrate our findings for the dissipative Jaynes-Cummings model [20, 93, 150,
151], which is algebraically simple but can show challenging time-singularities in the
generator. This exactly solvable model describes a two-level atom with transition fre-
quency ε (H = εd†d with {d, d†} = 1) interacting with a continuous bosonic reservoir
(HR =

∫
dωωb†

ωbω with [bω, b†
ω′ ] = δ(ω − ω′)1) initially in a vacuum state |0〉. The

coupling is bilinear,

HT =
∫

dω

√
Γ(ω)

2π

(
d†bω + b†

ωd
)

, (3.24)

with real amplitudes set by a spectral density Γ(ω). The occupation numbers of reservoir
modes are either 0 or 1 due to a dynamical constraint: the coupling (3.24) conserves the
total excitation number d†d +

∫
dωb†

ωbω. Here we study the effects of energy-dependent
coupling Γ(ω)without initial reservoir statistics (T = 0): We assume a Lorentzian profile
of width γ whose maximum value Γ ≡ Γ(ε) lies precisely at the atomic resonance:

Γ(ω) = Γ
γ2

(ε−ω)2 + γ2 . (3.25)

Although this model has been studied in detail [20, 21, 150, 151] and features in text
books [93] the remarkable relation between its generator G and memory kernel K has
not been noted, but see Ref. [158]. All results below can be generalized to any profile
Γ(ω).

From the solution [93] of the total-system state |ψtot(t)〉, with |ψtot(0)〉 = |ψ(0)〉 ⊗ |0〉,
we extract the propagator TrR{|ψtot(t)〉〈ψtot(t)|} = Π(t)|ψ(0)〉〈ψ(0)| working in the
Schrödinger picture and setting t0 = 0. It has the form of an amplitude damping
channel [12] with spectral decomposition2

Π(t) =|00)
[
(00|+ (11|

]
+ |π(t)|2

[
|11)− |00)

]
(11|

+ π(t) |10)(10|+ π(t)∗|01)(01|, (3.26)

using |νν′) = |ν〉〈ν′| and (νν′| = 〈ν| • |ν′〉, where |ν〉 denotes the atomic state ν = 0, 1.
The time-dependent parameter reads

π(t) = e−iεte−γt/2
[

cosh
(

γ′t
2

)
+

γ

γ′
sinh

(
γ′t
2

)]
(3.27)

2In Ref. [2] the coherence blocks of Π, G and K inadvertently swapped |01)↔ |10), without impact on
the discussions or plots. This has been corrected here.
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where γ′ :=
√

γ(γ− 2Γ). Thus, an initially excited state evolves with probability
〈1|ρ(t)|1〉 = |π(t)|2. In the frequency domain we have

Π̂(ω) =
i
ω
|00)

[
(00|+ (11|

]
+ |̂π|2(ω)

[
|11)− |00)

]
(11|

+ π̂(ω)|10)(10|+ π̂∗(ω)|01)(01|. (3.28)

The Laplace transforms

|̂π|2(ω) =
1
4
(γ/γ′ − 1)2

γ + γ′ − iω
+

1
4
(γ/γ′ + 1)2

γ− γ′ − iω
− 1

2
γ2/γ′2 − 1

γ− iω
, (3.29)

π̂(ω) =
γ/γ′ + 1

γ− γ′ − 2i(ω− ε)
− γ/γ′ − 1

γ + γ′ − 2i(ω− ε)
, (3.30)

and π̂∗(ω) = [π̂(−ω∗)]∗ determine the finite number of poles of the propagator Π̂(ω)

listed in Table 3.1.
It is now straightforward [20, 21] to determine the generator G(t) = iΠ̇(t)Π−1(t)

and the kernel K̂(ω) = ωI − iΠ̂−1(ω) whose relation has our interest. The spectral
decomposition for the generator reads

G(t) = 2iRe
(

π̇(t)
π(t)

) [
|11)− |00)

]
(11|+ i

π̇(t)
π(t)

|10)(10|+ i
(

π̇(t)
π(t)

)∗
|01)(01|, (3.31)

whereas for the kernel in the frequency domain it is

K̂(ω) =
(

ω− i

|̂π|2(ω)

)[
|11)− |00)

]
(11|

+
(

ω− i
π̂(ω)

)
|10)(10|+

(
ω− i

π̂∗(ω)

)
|01)(01|. (3.32)

The eigenvalues of K̂ satisfying k j(ωp) = ωp for some j correspond to the poles of Π̂(ω)

in Table 3.1.

3.4.1 | Overdamped dynamics (γ ≥ 2Γ)
Even with all explicit expressions in hand, it is by no means obvious that this model
obeys our sampling result (3.15) in the stationary limit t → ∞. We now first verify
this noting that our assumption that G(∞) exists holds only for broad spectral densities
such that γ ≥ 2Γ. In this case the real quantity γ′ =

√
γ(γ− 2Γ) ≤ γ represents a

suppression/enhancement of the decay rates−Imωp relative to the value γ in Table 3.1.
In this overdamped regime limt→∞ π̇(t)/π(t) = −iε − 1

2 (γ − γ′) converges and the
dynamics is CP-divisible3, but not semigroup Markovian (except for γ→ ∞).

3The generator can be written in time-dependent GKSL form with jump rate j(t) = −2Re[π̇(t)/π(t)].
For γ ≥ 2Γ we have j > 0 by π̇(t)/π(t) = −iε − 1

2 γ + 1
2 γ′ tanh( 1

2 γ′t + arctanh γ
γ′ ) which implies CP

divisibility.
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Table 3.1 shows that the resulting four eigenvalues of G(∞) indeed coincide with
four of the eight poles of Π̂(ω) as predicted by Eq. (3.12). Interestingly, G(∞) does not
always sample the “slowest” part of the evolution, i.e., the poles with the smallest decay
rates, even in this simple model. Whereas this happens for sufficiently large broadening
γ > 9

4 Γ, just before entering the underdamped regime there is a range 2Γ < γ < 9
4 Γ,

where two non-sampled poles ω4,5 have smaller decay rates than the sampled pole ω3,
see Table 3.1. Thus, G(∞) is completely determined by the sampling of K̂(ω) as dictated
by Eq. (3.15a). This does not illustrate the full complexity of the sampling since the right
eigenvectors of K̂(ω) are frequency independent and thus trivially provide the right
eigenvectors (3.13) of G(∞).

Poles Π̂(ω) Eigenvalues G(∞)

ω0 = 0 g0 = 0
ω1 = +ε− i 1

2 (γ− γ′) g1 = +ε− i 1
2 (γ− γ′)

ω2 = −ε− i 1
2 (γ− γ′) g2 = −ε− i 1

2 (γ− γ′)
ω3 = −i(γ− γ′) g3 = −i(γ− γ′)
ω4 = +ε− i 1

2 (γ + γ′) ←− Possibly closer to real axis
ω5 = −ε− i 1

2 (γ + γ′) ←− than ω3!
ω6 = −iγ
ω7 = −i(γ + γ′)

Table 3.1. Jaynes-Cummings model: Poles of Π̂(ω) and eigenvalues of G(∞) using the
abbreviation γ′ =

√
γ(γ− 2Γ).

Numerical implementationof the stationary iterationdescribed inSec. 3.3.1 converges
in a few steps to the exact stationary generator, which explicitly reads

−iG(∞) =− 2Γ
1 +

√
1− 2Γ/γ

[
|11)− |00)

]
(11|

+
(
− iε− Γ

1 +
√

1− 2Γ/γ

)
|10)(10|+

(
iε− Γ

1 +
√

1− 2Γ/γ

)
|01)(01|.

(3.33)

Importantly, we numerically observe this convergence starting from random initial su-
peroperators X, suggesting that it is a unique stable fixed point. Other fixed points of
Eq. (3.10) can be constructed analytically4, but these seem to be unstable since they are
not found in the numerical iteration. Due to this remarkable fact, the iterative solution

4(i) Select any four poles ωs1 , . . . , ωs4 from Table 3.1 that have linearly independent right eigenvectors.
These are eigenvectors from different superoperators K̂(ω′i) and thus need not be linearly independent.
(ii) From this basis |ks1), . . . , |ks4) construct a corresponding dual basis (k̄s1 |, . . . , (k̄s4 |. (iii) Construct a
fixed point as Gs1 ...s4 = ∑4

i=1 ωsi |ksi)(k̄si |.
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allows one to infer which of the poles are sampled by G(∞). As mentioned earlier this
can be used to assist the identification of the sampled poles in analytical calculations,
which aim to exploit Eq. (3.15).

Given the kernel K̂(ω), one can thus find G(∞) by iteration directly at stationar-
ity, avoiding the transient time-dependence of G(t). We plot the resulting semigroup
approximation in Fig. 3.2(b) and the different semigroup, generated by the exact low-
frequency kernel

−iK̂(0) =− Γ
1 + Γ/(2γ)

[
|11)− |00)

]
(11|

+

(
−iε− γΓ

2(γ + iε)

)
|10)(10|+

(
iε− γΓ

2(γ− iε)

)
|01)(01|, (3.34)

in Fig. 3.2 (a). The K̂(0) semigroup crosses the exact solution already at intermediate
times to approach it from above, whereas the G(∞) semigroup approaches it from below.
Indeed, in the overdamped regime the occupation decay rate of Eq. (3.33) is always larger
than that of Eq. (3.34). As expected, both semigroups have problems with the initial
nonlinear time-dependence on the scale γ−1 set by the reservoir bandwidth (3.25). Only
in the wide-band limit γ → ∞ the exact evolution is a semigroup, which in this case is
generated by G(∞) = K̂(0).

The slip-corrected semigroup Π(t) ≈ e−itG(∞)S is shown in Fig. 2.1 in comparison to
the ordinary semigroup e−itG(∞). Here the slip superoperator is given by

S = |00)
[
(00|+ (11|

]
+

(γ + γ′)2

4γ2

[
|11)− |00)

]
(11|+ 1

1− 2γΓ
(γ+γ′)2

[
|10)(10|+ |01)(01|

]
.

(3.35)

This slip correction improves the approximation starting from intermediate times as
discussed in Sec. 2.3.1, but violates positivity at short-times.

We have also implemented the functional iteration G(n)(t) for the transient generator
explained in Sec. 3.3.2, using Eq. (3.20) with KL = −i[H, •] and H = εd†d. In Fig. 3.2
(a) and (b) we additionally show the evolutions generated by the approximate G(n)(t)
starting from the initial function G(0)(t) = K̂(0) and G(∞), respectively. Like the
semigroups, each approximation approaches the exact stationary state at large times.
However, contrary to the semigroups, each iteration is also very accurate at short times,
see Eq. (3.23b). These two constraints enforce rapid convergence at intermediate times
throughout the overdamped parameter regime: in Fig. 3.2 (a) and (b) we did not plot
the n = 2 and n = 3 approximations, respectively, since they are hard to distinguish
from the exact solution. Thus, Fig. 3.2 (a) shows that Eq. (3.23a), based solely on one
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iteration of the time-nonlocal memory kernel, already provides a remarkably accurate
representation of the time-local generator.
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Figure 3.2. Jaynes-Cummings model, overdamped regime Γ/γ = 0.495 (γ′/γ = 0.1):
Decay of the probability 〈1|ρ(t)|1〉 for the excited state when it is initially occu-
pied, ρ(0) = |1〉〈1|. (a) Solutions obtained from the Markovian approximation
ρ̇(t) ≈ −iK̂(0)ρ(t) (red) together with the first iteration G(1) (cyan) of the transient
fixed-point equation (3.20) starting from G(0) = K̂(0). The exact solution is shown in
black. (b) Solutions obtained from the Markovian approximation ρ̇(t) ≈ −iG(∞)ρ(t)
(blue) together with two iterations of the transient fixed-point equation, G(1) (cyan) and
G(2) (green), when started from G(0) = G(∞) and exact solution (black).

3.4.2 | Underdamped dynamics (γ < 2Γ)
For narrow spectral density, γ < 2Γ, the evolution becomes underdamped and non-
divisible. The function

π(t) = e−iεte−γt/2
[

cos
(Ωt

2

)
+

γ

Ω
sin
(Ωt

2

)]
(3.36)

now oscillates with frequency Ω ≡ −iγ′ =
√

γ(2Γ− γ) with roots located at

tn = 2π
Ω

(
n− 1

π arctan
Ω
γ

)
(3.37)

This qualitative change of π(t) has two consequences.
First, the time-local generator G(t) exhibits singularities as function of time for

every t = tn [Eq. (3.31)]. As discussed in Sec. 2.1.2 these singularities are phys-
ical by restricting the allowed subspace of ρ(tn) irrespective of the initial state ρ0.
Here the allowed subspace at any tn contains only the groundstate |00), which makes
Π(tn) = |00)(1| = |0〉〈0|Tr • an entanglement breaking map [114–117].

A second consequence is that the stationary limit of G(t) does not exist, even though
the stationary propagator does converge, limt→∞ Π(t) = |00)(1|, and the low-frequency
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memory kernel K̂(0) is well defined. Irrespective of how generic both these complica-
tions are, they present perhaps the most crucial challenge to any time-local approach. It
is well known, for example, that perturbative calculations of G(t) cannot venture beyond
the first singularity on the time axis [37, 93]. In this sense themodel presents aworst-case
test for both variants of the fixed point iteration.

The stationary iteration [Sec. 3.3.1] is simply expected to fail since it relies on the
convergence of G(t) for t → ∞. Nevertheless, it is interesting to explore what happens.
Indeed, the stationary iteration for G(n)(∞) does not converge anymorewith n. However,
G is always block diagonal and we observe that the iterations for the generator on the
occupation subspace |00), |11) converge to

lim
n→∞
G(n)o (∞) = −iγ

[
|11)− |00)

]
(11|, (3.38)

whereas the generator G(n)c on the subspace |01), |10) of the coherences oscillates in-
definitely with n. In Fig. 3.3a we plot the time-evolution of occupations obtained from
the semigroup approximation constructed from Eq. (3.38). In contrast to the semigroup
generated by the well-defined K̂(0), it gives an accurate envelope to the decay of the
excited state, even in the strongly underdamped limit, γ� Γ where Ω ≈ √2Γγ� γ.
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Figure 3.3. Jaynes-Cummings model, underdamped regime Γ/γ = 13 (Ω/γ = 5) and
ε = 20: (a) Decay of the excited state occupation 〈1|ρ(t)|1〉 and (b) decay of the real part
of the coherence 〈0|ρ(t)|1〉. The initial state is ρ(0) = 0.1

[
|00)+ |01)+ |10)

]
+ 0.9|11).

Shown are the solution for the Markovian approximations ρ̇(t) ≈ −iG(∞)ρ(t) [blue]
with generator obtained by iteration of the stationary fixed point equation (3.9), and
ρ̇(t) ≈ −iK̂(0)ρ(t) [gray]. The exact solution is shown in black.

The converged part of the iteration can in fact be related to a regularization of
limt→∞ G(t). Noting that

π̇(t)
π(t)

= −iε− 1
2 γ− 1

2 Ω tan
(

1
2 Ωt− arctan

γ

Ω

)
(3.39)

42



Chapter 3. Generator fixed points of memory kernels 3.4. Application: Atomic decay

we see that replacing π̇(t)
π(t) → −iε− 1

2 γ amounts to a principal-value time-average over
one period. This gives a regularized stationary limit for the generator,

G(∞)reg = −iγ
[
|11)− |00)

]
(11|+ (ε− 1

2 iγ)|10)(10|+ (−ε− 1
2 iγ)|01)(01|. (3.40)

which coincides with the numerically converged block (3.38) of the iteration. The value
of the coherence block exposes a key complication of the exact evolution of thismodel. In
Fig. 3.3b, we show that the semigroup constructed from G(∞)reg describes the decay and
oscillation of the coherences accurately in the center of every even time interval. However,
it is also accurate up to the sign in every odd interval. The intermediate π-phase jumps
occurring in the exact solution are caused by the divergences of the generator at times
tn. The stationary fixed-point iteration may thus still be useful beyond the limitations
we assumed in the present paper.

Finally, we consider how the transient fixed-point iteration [Sec. 3.3.2] deals with
the time-singularities in this model. In Fig. 3.4 we show how the occupations, starting
from the semigroup approximation generated by K̂(0), converge to the exact solution.
The first two iterations only improve the solution before the first singularity and even
become unphysical at larger times. However, the following iterations also converge
beyond the first singularity. The fifth iteration (not shown) is indistinguishable from
the exact solution in the shown time interval. More iterations are required to converge
the solution in a larger time interval also including the second singularity. The success
of our iteration strategy starting from the memory kernel K highlights its difference to
perturbation theory, which always fails in capturing dynamics beyond a singularity [93].
Thus even time-singular generators can be locally stable fixed points of the functional
K̂.
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Figure 3.4. Jaynes-Cummings model, underdamped regime: Decay of the probability
〈1|ρ(t)|1〉 obtained from generators of the transient iteration for Γ/γ = 13 and ε = 20
using the starting point K̂(0).
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3.5 | Application: Non-interacting quantum dot
coupled to an electrode

We complement the above by an analysis of the fermionic resonant level model (RLM).
Although its generator has no time-singularities, its time-dependent algebraic structure
provides a challenge complementary to thepreviousmodel. TheHamiltonian is formally
identical to that of the Jaynes-Cummings model except that the reservoir operators are
fermionic, {bω, b†

ω′} = δ(ω−ω′)1. Also, we consider the reservoir at temperature T and
chemical potential µ coupled with an energy independent spectral density Γ = const.
This is the most basic model of transient electron tunneling from a localized state. Even
though it ignores interaction effects, its propagator is feature rich. This was noted in
recent work [1], but the nontrivial relations between K and G and their spectra noted
below were overlooked. The diagonal representation of Π reads (Ref. [1], Eq. (E1))

Π(t) = 1
2

[
|1)+ p(t)|(−1)N)

]
(1|+ e−Γt 1

2 |(−1)N)
[
((−1)N|− p(t)(1|

]
+ ∑

η=±
e(iηε− 1

2 Γ)t|d†
η)(d†

η| (3.41)

where d+ ≡ d†, d− ≡ d. In contrast to the Jaynes-Cummings model its eigenvectors
depend on time through the function

p(t) = ∑
η=±

η Im
[ e−(πT+iε)t

π sinh(Γt/2)
Φ(e−2πTt, 1, 1

2 +
iε+ηΓ/2

2πT ) +
eηΓt/2

π sinh(Γt/2)
Ψ( 1

2 +
iε+ηΓ/2

2πT )
]

(3.42)

involving Lerch (Φ) and digamma (Ψ) functions with ε = ε− µ. This richer structure is
also reflected by the analytic properties of the propagator (Ref. [1], App. D)

Π̂(ω) = ∑
η=±

i
ω + ηε + i Γ

2

|d†
η)(d†

η|+
i
ω

1
2

[
|1)+ k̂

(
ω + i Γ

2

)
|(−1)N)

]
(1|

+
i

ω + iΓ
1
2 |(−1)N)

[
((−1)N|− k̂

(
ω + i Γ

2

)
(1|
]

(3.43)

expressed in the Laplace transform k̂(ω) of k(t) ≡ 2Tsin[(ε− µ)t]/sinh[πTt]. Its poles,
see Table 3.2, include two infinite series for T > 0 merging into branch cuts as T → 0.

The generator G(t) = iΠ̇(t)Π−1(t) (Ref. [1], Eq. (B14))

G(t) = ∑
η=±

(
− ηε− i 1

2 Γ
)
|d†

η)(d†
η|− iΓ 1

2 |(−1)N)
[
((−1)N|− g(t)(1|

]
(3.44)
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Poles Π̂(ω) Eigenvalues G(∞)

ω0 = 0 g0 = 0
ω1 = +(ε− µ)− i 1

2 Γ g1 = +(ε− µ)− i 1
2 Γ

ω2 = −(ε− µ)− i 1
2 Γ g2 = −(ε− µ)− i 1

2 Γ
ω3 = −Γ g3 = −Γ
ω4+2n = ω1 − iπT(2n + 1) ← Possibly closer to real axis
ω5+2n = ω2 − iπT(2n + 1) ← than ω3!

Table 3.2. RLM: Poles of Π̂(ω) (n = 0, 1, 2, . . .) and eigenvalues of G(∞).

is obtained with g(t) =
∫ t

0 dse−
1
2 Γsk(s). The evolution changes its Markovian character

from CP divisible (|g(t)| ≤ 1) close to resonance to non-divisible sufficiently far from
resonance. The kernel K̂(ω) = ωI − iΠ̂−1(ω) can be expressed as (Ref. [1], (D13))

K̂(ω) = ∑
η=±

(
− ηε− i 1

2 Γ
)
|d†

η)(d†
η|− iΓ 1

2 |(−1)N)
[
((−1)N|− k̂

(
ω + i 1

2 Γ
)
(1|
]
. (3.45)

Unlike the Jaynes-Cummingsmodel, none of these superoperators commute with them-
selves at different time/frequency/parameter values (on which their eigenvectors de-
pend) nor with each other (since p(t), k(t), g(t) all differ). We now show that, neverthe-
less, the sampling relation (3.15) explicitly holds.

Table 3.2 shows that the four eigenvalues of G(∞) indeed coincide with four of
the poles of Π̂(ω), which coincide with the four frequency-independent eigenvalues of
K̂(ω). However, the propagator Π̂(ω) has infinitely many more poles {ωn}n≥4 which
arise from the function k̂

(
ω + i 1

2 Γ
)
located in the eigenvectors of K̂(ω). These are not

sampled as explained after Eq. (3.13). For T ≤ Γ/(2π) some of these non-sampled poles
lie in between the sampled poles ω1, ω2 and ω3 and form branch cuts as T → 0.

In Table 3.3we illustrate how G(∞) also nontrivially samples the eigenvectors of K̂(ω)

as follows: (i) We collect one right eigenvector from each of the four different superoper-
ators K̂(0), K̂(±ε− i 1

2 Γ) and K̂(−iΓ). (ii) This gives four right vectors |k̂ ji(gi)) = |gi).
(iii) From this set one algebraically constructs a set of biorthonormal covectors (g′i|. This
way we remarkably obtain the left and right eigenvectors of G(∞) as given by Eq. (3.44)
using the analytic property g(∞) = k̂(i 1

2 Γ). Note in particular that one would not obtain
the correct left eigenvectors of G(∞) by naively sampling the left pole-eigenvectors of the
kernels. For eigenvalue g3 = −iΓ a difference arises as indicated by the two arrows in
Table 3.3.

We observe that for the RLM each eigenvalue-pole is sampled precisely once by
G(∞). Combined with the mere assumption that G(∞) is diagonalizable the sampling
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(iv) Don’t copy these! K̂(gi) (i) Copy these (iii) Biorthogonalize G(∞) (ii) Collect here

(k̂′ji(gi)| k̂ ji(gi) |k̂ ji(gi)) (g′i| gi |gi)

(1| 0 1
2

[
|1)+ k̂(i Γ

2 )|(−1)N)
]

(1| 0 1
2

[
|1)+ k̂(i Γ

2 )|(−1)N)
]

↓ (d†
η| −ηε− i 1

2 Γ |d†
η) ↓ (d†

η| −ηε− i 1
2 Γ |d†

η)

1
2

[
((−1)N|− k̂

(
− i Γ

2

)
(1|
]

−iΓ |(−1)N) 1
2

[
((−1)N|− k̂(i Γ

2 )(1|
]

−iΓ |(−1)N)

Table 3.3. RLM: Sampling of memory kernel K̂(ω) by the stationary generator G(∞)
[Eq. (3.15)]. Left columns: for each different superoperator K̂(gi) we list one pole-
eigenvalue with its left and right eigenvector. Right columns: collecting the right eigen-
vectors from K̂(gi) and biorthonormalizing we construct the left eigenvectors (g′i|. Row
i = 1, 2 corresponds to η = ±.

relation (3.15) thus completely determines this superoperator, because it exhausts the
number of eigenvalue-poles (d2 = 4).

For the RLM the numerical stationary iteration [Sec. 3.3.1] starting from any initial
G(0)(∞) also converges to the exact stationary generator. This holds for all parameters of
the model. Strikingly, using G(0)(∞) = K̂(0) as a starting point the iteration terminates
right away at the zeroth iteration, implying an exact relation5

G(∞) = K̂(0). (3.46)

Using g(∞) = k̂(i 1
2 Γ) one verifies Eq. (3.46) comparing Eqs. (3.45) and (3.44).

The transient iteration [Sec. 3.3.2] starting from the constant ansatz G(0)(t) = K̂(0)
does not terminate immediately, because the evolution is not a semigroup (except for
T → ∞ or ε− µ → ∞ or ε = µ) [1]. However, for this ansatz the first transient iteration
G(1)(t) =

∫ t
0 dsK(t − s)eiK̂(0)(t−s) = G(t) does give the exact solution, again for all

parameters of the model. This reflects an exact relation [Ref. [1], Eqs. (52a), (D15)]

G(t) =
∫ t

0
dsK(t− s), (3.47)

which for t → ∞ again implies Eq. (3.46). In Fig. 3.5 we show the time-dependence of
the occupations for the zeroth and first iteration. Unlike the Jaynes-Cummings model,
the level can initially actually fill up more before decaying to the empty stationary state,
an effect caused by time-dependence of eigenvectors of Π(t) [Eq. (3.41)]. This reentrant
behavior is completely produced in one step by G(1)(t) from the Markov semigroup

5This relation should not be misunderstood as saying that “G(∞) only samples K(ω) at ω = 0” and
that there is something trivial about the sampling: keeping only ω = 0 in Eq. (3.15) would give G(∞) = 0.
Instead, this relation is a nontrivial statement about the memory kernel of this model: sampling K̂(ω)
according to Eq. (3.15) at eigenvalue-poles – including ones at nonzero frequencies and ignoring eigenvector
poles / branch cuts – exactly reproduces the zero-frequency kernel K̂(0).
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Figure 3.5. Decay of the occupation 〈1|ρ(t)|1〉 in the RLM for ε − µ = 2πΓ,
T = 0.1 · Γ/(2π) obtained from G(0)(t) = K̂(0) and G(1)(t) = G(t). The former cor-
responds to a Markov semigroup approximation using K̂(0), which is never able to
describe the initial growth of the occupation away from the stationary value. When used
as initial guess in the transient iteration the exact solution is recovered by the fixed-point
equation (3.4) after a single step.

approximation G(0) = K̂(0) = G(∞), which can never capture an initial growth in the
“wrong direction”.

In fact, any trace-preserving constant ansatz G(0)(t) = X gives the exact solution after
one iteration, G(1)(t) = G(t) as shown inApp. C. Furthermore, starting from an arbitrary
time-constant superoperator, G(0) = X 6= 0, the second transient iteration always reaches
the fixed point, because the first iteration G(1)(t) produces a trace-preserving generator
[Eq. (3.6)]. That two iterations suffice for all parameters of the model is remarkable since
this includes the extended parameter regime where the level is sufficiently off-resonant
and the evolution is not CP-divisible [1, 3]. For comparison, in the underdamped regime
where the Jaynes-Cummings model is non-CP-divisible many iterations are required
[Fig. 3.3]. The termination of the fixed-point iteration is closely related to truncations
of (renormalized) coupling expansions for K(t) and Π(t) for fermionic models, which
occur in the absence of interactions and for energy independent coupling, see Sec. 4.3.2.
This indicates that the number of iterations is related to dynamically generated many-
body effects.

3.6 | Summary
We have found the general connection between two canonical approaches to the dy-
namics of open quantum systems, the time-local and time-nonlocal quantum master
equation. This relation extends the response function of an open system – the frequency-
domain memory kernel K̂(ω) – to a functional mapping of superoperator-functions of time
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of which the generator is a fixed point: G(t, t0) = K̂[G](t, t0). The fixed-point property
expresses that the generator is a characteristic “frequency” of the evolution produced
by the memory kernel. This is very similar to how pole frequencies characterize the
response of linear systems in physical sciences and engineering [159]. In our general
quantum setting, we showed how the fixed-point equation provides a self-consistent
solution of the complicated gradient expansion [Eq. (3.18) and (B.7)]. Interestingly, this
also revealed a connection of the time-convolutionless approach to a Moyal formulation
of quantum theory of open systems [Eq. (B.5)].

We obtained several general insights into the role of the frequency dependence of the
memory kernel. We precisely determined how the stationary generator G(∞) samples
the right eigenvectors and eigenvalues of the memory kernel K̂(ω) at zero and nonzero
characteristic frequencies of the evolution. The sampled frequencies form a finite subset
of the exact poles of the frequency-domain evolution as obtainedby theLaplace-resolvent
method in the time-nonlocal approach. Remarkably, knowing only the location of these
poles in the complex plane in principle suffices to completely construct the stationary
generator G(∞) from the memory kernel. This can be exploited to significantly simplify
analytical calculations. This generator may also be obtained numerically by iterating the
stationary fixed-point equation (3.9).

Similarly, the full transient generator may be obtained from the memory kernel by
iterating the functional fixed-point equation (3.4). At each iteration the approximate
generator is both initially and asymptotically accurate. We have shown that even time-
singular generators can be locally stable and also showcased an evolution with time-
dependent eigenvectors whose generator is exactly found after at most two iterations.
The apparent success of this iteration strategy raises several interesting questions:

� The convergence of the (transient and stationary) functional iteration formally
relies on the stability of the fixed points in the space of generators, raising the
question how this stability is encoded into K̂. For scalar functions k(x) (with
x ∈ R) it is well known that a fixed point x∗ = k(x∗) is stable if |k′(x∗)| < 1.
We expect that by generalizing this stability condition to the functionals K̂(•) and
K̂[•] that there exists a stability equation of the schematic form “|∂K̂/∂G| < 1”.
This might expose further unexplored non-perturbative relations connecting the
time-local and time-nonlocal approaches.

� A related fundamental question concerns the uniqueness of the fixed points.
For the stationary functional K̂(•) we already found that additional fixed points
G̃(∞) 6= G(∞) can exist [Sec. 3.4.1]. However, this does not imply that the transient
functional K̂[•] must also have fixed points other than G(t). For example, if there
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were some G̃(t) obeying K̂[G̃(t)] = G̃(t) + e−λt, then G̃(t) would not be a fixed
point of the transient functional, but G̃(∞)would be a fixed point of the stationary
functional. Thus the uniqueness of the fixed point warrants additional study to
lend further support to the iterative method and to physically understand what
guarantees the uniqueness observed in practice.

� We have seen [Sec. 3.4] that starting from a semigroup approximation, each itera-
tion of the transient functional incorporates more of the “memory” integral over
K into G in a stepwise fashion. This defines a discrete flow in the functional super-
operator space and is reminiscent of a renormalization group flow. The range of
attraction around the fixed point must somehow be related to physical retardation
properties of the open system. It is an intriguing question whether the nature of
the flow could be used to classify open systems in some way, similar to the way
RG fixed points are used to characterize field theories and critical systems.

Since our results apply quite generally and can be tailored to both numerical [25, 26]
and analytical [23, 24, 27] applications, they seem relevant to the challenging problems
of strongly interacting open quantum systems dominated by nonperturbative dissipa-
tion and memory effects. Altogether, this provides new starting points for combining
well-developed memory kernel formalisms to access the advantages of a time-local de-
scription.
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4

The connection between time-local
and time-nonlocal series expansions

In the last chapterwe found that the time-local generator G is a fixed point of the Laplace-
like transformation functional (3.5) induced by the time-nonlocal memory kernel K.
Besides revealing surprising exact relations between spectral properties of G, K and Π
[Sec. 3.2], we explained how to iteratively construct from a given K an equivalent G,
guaranteeing that both produce the exact same dynamics [Sec. 3.3]. In this chapter we
instead explore how the fixed-point relation can be used to translate K-methods into
G-methods, giving different approximations. Specifically, we will show how a series
expansion for K can be transformed into a corresponding series for G. The precise
connection between such corresponding series was an open problem even for the well
understood bare perturbation theories in the coupling to the environment, which were
independently developed for K and G.

This transformation of methods fromK to G is of interest because several techniques
have been developed to compute K for complicated models featuring strong interaction
andmemory effects [23–27, 29, 30, 133, 134, 160–162]. By contrast, the computation of the
time-local generator is much more challenging, but nevertheless has been approached
fromvarious angles [38, 39, 42, 163, 164]. As discussed in Sec. 1.2 this ismotivated, for ex-
ample, by the fact that G is the quantity of choice for understanding (non-)Markovianity
by its connection to divisibility [Sec. 2.2], which seems practically impossible to achieve
with a description of the dynamics based on K [48, 49, 53].

The main result presented in Sec. 4.1 is that the fixed-point equation (3.5) reveals a
recursive relation between perturbative expansions of K and G, allowing a series for the
kernel K to be translated directly into a corresponding series for the more complicated
generator G. As discussed in Sec. 2.3.2, approximations toK and G computed to the same
order using the same perturbative scheme give different approximate evolutions Π due to
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the difference in time (non-)locality. This raises the intriguing but delicate question which
of the two expansions does “better”, an issue calling for a general way to meaningfully
compare such expansions. In Sec. 4.3we illustrate how this canbedone for the example of
the interacting Anderson quantum dot by calculating bothK and G in bare perturbation
theory. We do this using a particular diagrammatic language [23, 136], but we stress that
this technique is not at all essential to our central result. The same result is obtained, for
instance, using the Nakajima-Zwanzig projection technique instead. We also explore a
more powerful renormalized perturbation theory for K, which was initially developed as
a first stage of a continuous RG-flowmethod for open quantum systems [23, 165], to deal
with strong dissipative coupling and non-equilibrium. It was later studied on its own
merits [1, 135–137] and revealed powerful exact relations [3, 137]. However, applications
of this renormalized series to the transient time-evolution of interacting systems analyzed
here were not yet explored.

4.1 | Recursive expansion of the generator in terms of
the memory kernel

Given a memory kernel K (or an approximation to it), we ask the question how to
construct a corresponding (approximation to the) generator G. Whereas in Sec. 3.3.2
we explained how to do this using a fixed point iteration of the functional (3.5), here
we instead focus on useful formal implications of the fixed-point equation (3.4), in
particular, how it leads to a natural reorganization of perturbation expansions when the
time-(non)locality of the quantum master equation is altered.

Thus, the goal is to find a perturbative expansion for G based on a corresponding
expansion for K. By “corresponding” we mean that both series count powers of the
same formal expansion parameter. We start by decomposing K as in Eq. (2.4) into a
time-local contribution KL, which is at first taken to be the uncoupled system Liouvil-
lian, and a time-nonlocal contribution KN denoting the remaining environment part
due to non-zero coupling. The kernel K(0)(t, s) := KLδ̄(t − s) producing semigroup
dynamics Π(0) := e−iKLt via Eq. (2.3) will be the reference point of the perturbation
theory. Importantly, we will also allow for a renormalized expansion, in which a further
time-local contribution – which was still contained in KN – is included in KL, making
the reference evolution Π(0) dissipative, see details below. In either case we assume for
simplicity that KL is time-independent, but this is not a limiting assumption.

Decomposing G(t, t0) = KL + GN(t, t0) analogously, the fixed point equation (3.4)
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implies that GN obeys

GN(t, t0) =
∫ t

t0

dsKN(t, s)T→ei
∫ t

s dτ[KL+GN(τ,t0)]. (4.1)

We correspondingly use G(0) = KL as a reference for the expansion of G. Assuming that
the nonlocal part of the memory kernel is given by a series in some formal parameter,
KN = K(1) +K(2) + . . . , we can derive the corresponding series for GN = G(1) + G(2) + . . .
in the same parameter by first expanding the anti-time-ordered exponential in Eq. (4.1)
and then matching orders. The first two terms explicitly read

G(1)(t, t0) =
∫ t

t0

dsK(1)(t, s)e−iKL(s−t), (4.2)

G(2)(t, t0) =
∫ t

t0

dsK(2)(t, s)e−iKL(s−t)

+ i
∫ t

t0

ds
∫ t

s
dτK(1)(t, s)e−iKL(s−τ)G(1)(τ, t0)e−iKL(τ−t). (4.3)

The general n-th order G(n) is similarly given by

G(n)(t) =
n−1

∑
l=0

il ∑
Σimi=n

∫
dτ0 . . . dτl

t0<τ0<···<τl<t

K(m0)(t, τ0)e−iKL(τ0−τ1)G(m1)(τ1) · · · G(ml)(τl)e−iKL(τl−t),

(4.4)

where the second sum runs over m0, . . . , ml > 0. We thus see that the fixed-point equa-
tion automatically organizes the series expansion of GN into a recursive form. It is well
known that when computing the memory kernel K, for example using standard projec-
tion operator or diagrammatic techniques, one obtains only time ordered contributions
(convolutions), whereas the generator G has a more complicated structure involving
combinations of non-time ordered integrations. The recursive reorganization implied
by the fixed-point relation completely disentangles this nontrivial structure: Eq. (4.4)
reveals that collecting all time-ordered contributions one obtains precisely the various
memory kernel components K(n) – obtainable by well-developed standard techniques –
and that the remaining integrations are exclusively anti-time-ordered. In the remainder
of the paper we will exploit this insight using the diagrammatic approach, noting that
one may equivalently use the projection operator technique.

So far we refrained from making use of the propagator. However, if the orders of Π
are formally known this can be useful. By similarly expanding Π = Π(0) + Π(1) + . . .
and inserting into GNΠ = KN ∗Π, written as GN =

[
KN ∗Π− GN

(
Π− e−iKLt)] eiKLt,

one obtains a useful reorganization, expressing the n-th order of G in terms of its lower
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orders with the help of both the memory kernel K and the propagator up to order n,

G(n) = K(n) ∗Π(0)eiKLt +
n−1

∑
j=1

[
K(n−j) ∗Π(j) − G(n−j) ·Π(j)

]
eiKLt. (4.5)

The above relations are key results because they applygenerally to openquantumsystem.
Since the fixed-point equation is flexible and can be exploited in variousways, it is im-

portant to keep a point inmind thatwe already touched on in Sec. 2.3.2: We are interested
in comparing different solutions generated by corresponding perturbative expansions,
the difference arising from their time-(non)locality. We want to explore whether sum-
ming up partial contributions in a time-local framework leads to better results in some
sense than when doing the corresponding sum in the time-nonlocal framework. Given,
for example, a second order approximation to the kernel, Kpert = KLδ̄ +K(1) +K(2) , it
is only meaningful to compare the evolution it produces via Eq. (2.3) with the evolution
produced via Eq. (2.9) by the perturbative Gpert ≈ KL + G(1) + G(2), where we in both
cases expand in the same parameter. When takingKL = L := [H, •], this corresponds to
contrasting the well-established bare perturbation expansions of K [133, 134, 166] and
G [34–36, 38, 93, 112, 113] whose traditional derivations are very difficult to compare.
Since we are able to treat both expansions in the same, standard way a comparison
becomes possible.

This perturbative generator Gpert has to be contrasted with the approximate self-
consistent generator Gsc, which produces exactly the same evolution via Eq. (2.9) as the
perturbative Kpert does via Eq. (2.3). In other words, it satisfies the fixed-point equa-
tion Gsc = K̂pert[Gsc] being self-consistent relative to the kernel approximation. This
approximate but self-consistent generator differs from Gpert considered in this chapter,
Gsc 6= Gpert. One should realize that when using Gsc one essentially gives up calculat-
ing the generator directly but formulates all approximations using K and afterwards
produces the equivalent generator (as opposed to corresponding).

4.2 | Comparing approximations
Before we start investigating different approximations, we note that one obvious com-
parison to consider is the difference of the approximate state evolution with the exact
one. In the following we will quantify the difference between two density operators ρ

and σ using the trace distance

D
(
ρ, σ
)

:=
1
2
‖ρ− σ‖1, (4.6)
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featuring on the right hand side the trace normwe already encountered in the discussion
of Markovianity in Sec. 2.2.2. This is a metric on the space of density operators with a
physical meaning: it determines the optimal probability [126] of distinguishing ρ and
σ drawn from an unbiased ensemble. Also, given any observable A it can be shown
that the trace distance bounds the difference of its expectation value using either ρ or σ

relative to the largest singular value ‖A‖∞ (Schatten ∞-norm [167]):∣∣〈A〉ρ − 〈A〉σ∣∣/ ‖A‖∞ ≤ 2D
(
ρ, σ
)
. (4.7)

Of course, for problems of actual interest the exact solution needed for this compar-
ison is not available. Then the most basic thing to check is whether the approximation
stays physical, for which two criteria need to be fulfilled. First, the trace needs to be
preserved. This is automatically guaranteed in Eqs. (4.20a)–(4.20c) below term by term,
because on the left there is always a creation superfermion G+

ησ, which has the trace
functional as a left zero eigenvector [136]. Second, an evolution needs to be CP. It is
well known how to check this based on the solution for the propagator Π(t) by checking
the positivity of the so-called Choi operator [167], but frequently this is not discussed in
studies of advanced approximation strategies which go beyond the applicability of the
GKSL theorem [118, 119]. One should note that CP can not be determined by looking at a
trajectory ρ(t) = Π(t)ρ0 starting from some specific initial state ρ0, see Ref. [1] for details
and examples. Moreover, an evolution Π(t) may even produce valid quantum states
ρ(t) for any valid input state ρ0, i.e., be positivity preserving, but still fail to be completely
positive. This is not a rare situation and such unphysical maps are well known from
their mathematical application to the detection of entanglement [168].

4.3 | Application: Interacting quantum dot
As an example, we consider a single orbital quantum dot with spin described by

H = ε(n↑ + n↓) + Un↑n↓. (4.8)

Here ε is the energy of the orbital, nσ = d†
σdσ the number operator for spin σ and U is the

Coulomb interaction. This quantum dot is connected to several free electron reservoirs

HR = ∑
rσ

∫
dω(ω + µr)a†

rσ(ω)arσ(ω). (4.9)

We allow that the reservoirs labeled by r are initially in thermal equilibrium at different
temperatures Tr and chemical potentials µr, but in illustrations we focus on Tr = T. The
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tunnel junctions are modeled with the Hamiltonian

HT = ∑
rσ

∫
dω

√
Γrσ

2π

(
a†

rσ(ω)dσ + d†
σarσ(ω)

)
, (4.10)

where Γrσ is the real-valued, spin-dependent spectral density of reservoir r assumed to
be energy independent (wideband limit). Thus the total Hamiltonian is

Htot = H + HR + HT. (4.11)

The open system dynamics is calculated by tracing out the reservoirs obtaining an
exact description of the evolution of the density operator of the quantum dot. For this
effective description a formalism based on superoperators is convenient. Here we use
the superfermion approach to Liouville space introduced in Ref. [23] using the later
formulation of Ref. [136], where details and comparison with other constructions can be
found. Defining first the shorthand notation

dησ :=

{
d†

σ for η = +

dσ for η = − , (4.12)

the superfermions are superoperators defined as

Gp
ησ• :=

1√
2

[
dησ •+p(−1)n • (−1)ndησ

]
, (4.13)

where p = + gives a creation and p = − an annihilation superoperator and

(−1)n := (1− 2n↑)(1− 2n↓) (4.14)

denotes the fermion parity operator. The superfermions act in the Liouville-Fock space
analogously to the way that ordinary creation/annihilation operators act in the Hilbert-
Fock space. The supervacuum state |0) corresponding to Eq. (4.13) is given by the infinite-
temperature stationary state |0) := 1

21 considered as a supervector. From this a complete
basis for the Liouville-Fock space is generated by the superfermionic creation operators
(G+

ησ) in the usual way [135]. This choice of fields and vacuum is particularly well-
adapted to the perturbation expansion, as we will see [Eq. (4.26)]. Furthermore, the
superfermions anticommute,{

Gp1
η1σ1 , Gp2

η2σ2

}
= δp1 p̄2 δη1η̄2 δσ1σ2 , (4.15)

where x̄ := −x, and they satisfy a super-Pauli principle, which states that it is formally
impossible to create or destroy two identical superfermions(

Gp
ησ

)2
= 0. (4.16)
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This implies that the maximally filled state in Liouville space holds four superfermions
and any term with five or more G+ in a row must vanish algebraically. In the same
fashion as ordinary operators are written down as strings of creation/annihilation field
operators this can also be done for superoperators. For example, the local Liouvillian,
L• := [H, •], is given by [136]

L =∑
ησ

[
η̄
(
ε + 1

2U
)

G+
η̄σG−ησ +

1
2U
(

G+
η̄σG−ησG−η̄σ̄G−ησ̄ + G+

η̄σ̄G+
ησ̄G+

η̄σG−ησ

) ]
. (4.17)

4.3.1 | Bare expansions – Success of the time-local approach

Bare perturbation theory for the memory kernel K

One systematic way of computing K is by a bare perturbation expansion in the cou-
pling to the environment. This is substantially simplified [135, 169–171] by combining
diagrammatic [134, 161] and Liouville-Fock space techniques [23, 24, 137] and exploit-
ing the wideband limit from the very beginning. We refer the reader to Ref. [136] for
further details. The crucial underlying assumption for this is that the reservoirs are
non-interacting: in this case all multi-particle correlation functions of the reservoirs – de-
termining the time-nonlocal backaction of the system via the memory kernel – factorize
into one-particle functions (Wick-theorem).

Because the total Hamiltonian Htot is time-independent, the kernel only depends on
the difference of its time arguments, K(t, s) = K(t− s). Using the decomposition (2.4)
we have KL = L and the goal is to compute the nonlocal part KN = K(1) +K(2) + . . . ,
where each term K(n) contains n tunneling contributions [Eq. (4.10)]. Because of the
bilinear structure of HT it follows that all odd orders vanish. The first two nonvanishing
orders are then diagrammatically represented by

−iK(2)(t) = , (4.18)

−iK(4)(t) = + . (4.19)
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The diagrams are specifically given by

=−∑
pησ

γ
p
ησ(t)G+

ησe−iLtG p̄
η̄σ, (4.20a)

= ∑
p1η1σ1

∑
p2η2σ2

∫ t

0
dt1

∫ t1

0
dt2γ

p1
η1σ1(t)γ

p2
η2σ2(t1 − t2)

× G+
η1σ1

e−iL(t−t1)G+
η2σ2

e−iL(t1−t2)G p̄2
η̄2σ2

e−iLt2 G p̄1
η̄1σ1

, (4.20b)

=− ∑
p1η1σ1

∑
p2η2σ2

∫ t

0
dt1

∫ t1

0
dt2γ

p1
η1σ1(t− t2)γ

p2
η2σ2(t1)

× G+
η1σ1

e−iL(t−t1)G+
η2σ2

e−iL(t1−t2)G p̄1
η̄1σ1

e−iLt2 G p̄2
η̄2σ2

. (4.20c)

Here the two possible contraction functions read γ
p
ησ(t) = ∑r γ

p
ησr(t) with

γ+
ησr(t) =

1
2 Γrσ δ̄(t) (p = +), (4.21a)

γ−ησr(t) = −i
ΓrσTr

sinh(πtTr)
eiη̄µrt (p = −). (4.21b)

These are essentially the retarded and Keldysh reservoir correlation functions [1, 135],
respectively. The δ̄ distribution in the time-local γ+

ησ contraction arises due to the wide-
band limit, which was already incorporated into the definition of the Hamiltonians. As
another consequence of this, the time-nonlocal γ−ησ contractions contains a singularity
at t = 0. Importantly, in App. D we show that the special algebra of the superfermions
elegantly ensures that all shown diagrams stay finite nevertheless. There it is explained
how the contributions combine to yield convergent time integrals, which can be straight-
forwardly implemented.

We illustrate the above for a generic set of parameters in Fig. 4.1(a–b). There we solve
the time-nonlocal equation (2.3) using the numerically computed second and fourth
order kernels. Referring to the solutions as ρ

(2)
K,bare(t) and ρ

(4)
K,bare(t) respectively, we plot

their trace distance to the exact solution ρexact(t) for the noninteracting case U = 0 as
function of time t and temperature T. As expected, the quality of each approximation is
improved with higher temperature and the fourth order solution ρ

(4)
K,bare(t) has a larger

range of validity than ρ
(2)
K,bare(t). At small temperatures the approximations work well

only for short times tΓ . 1 where the infinite-temperature contributions dominate the
dynamics. This is also reflected by the more basic check of the complete positivity (CP)
of the propagator Π(t), which is violated in the black and gray areas. It can be seen that
ρ
(2)
K,bare(t) suffers from unphysical regimes, which become smaller when going to the

next order ρ
(4)
K,bare(t). Importantly, when only checking whether the specific output state

ρ(t) = Π(t)ρ0 is unphysical (non-positive), which is the case in the gray areas, onemisses
that in the black areas the approximation has already failed, because the propagator does
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Figure 4.1. Transient evolution of an initially unoccupied Anderson dot, ρ0 = |0〉〈0|,
detuned by ε = 2Γ connected to a left and right reservoir at the same temperatures
TL = TR = T and biased chemical potentials µL = 0, µR = −0.2Γ. Regions in which
the approximated state is not positive are shown in gray. Regions in which the ap-
proximated state is positive, but the propagator is not completely positive are shown
in black. (a) Non-interacting case: Trace distance D(ρ

(2)
K,bare(t), ρexact(t)) between the

second-order bare time-nonlocal solution ρ
(2)
K,bare(t) and the exact solution. (b) Non-

interacting case: Trace distance D(ρ
(4)
K,bare(t), ρexact(t)). (c)-(d) Interacting case U = 10Γ:

regions of (complete) positivity for (c) ρ
(2)
K,bare and (d) for ρ

(4)
K,bare.

not handle entanglement correctly (non-CP). These latter regimes are thus especially
dangerous in practice.

Finally, in Fig. 4.1(c–d)we show thatwhen turningon the interactionU theunphysical
area of the second order solution ρ

(2)
K,bare(t) increases. This is different for ρ

(4)
K,bare(t) for

the chosen parameters: whereas the detailed shape of the unphysical areas do change
with interaction, the overall size does not significantly increase.
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Bare perturbation theory for the time-local generator G
With the orders of the kernel K in hand and decomposing G = KL + G(1) + G(2) + . . .
as before our key results (4.2)–(4.3) make it straightforward to compute the orders of G
taking KL = L. Using our recursive relation (4.5) it is furthermore straightforward to
infer a diagrammatic representation for G using only standard diagrams ofK and Π and
the shorthand Π0 = e−iLt:

−iG(2)(t) = ·Π†
0, (4.22)

−iG(4)(t) = ·Π†
0 + ·Π†

0

+ ·Π†
0 − ·Π†

0 · ·Π†
0, (4.23)

Thus, no new technique and no new diagrammatic representation are required. We see
that the general structure consists of backward bare propagations Π†

0, followed by blocks
of K and Π, which only propagate forward. This is not unexpected: by the definition of
the generator, G = iΠ̇ Π−1, any expansion for G will contain both propagations forward
(from Π̇) and backward (from Π−1). This is precisely what makes the expansion of G
more complicated than that of K [Eqs. (4.18)–(4.19)].

In Fig. 4.2 we analyze the trace distance of the time-local approximations to the exact
solution in the noninteracting case U = 0. We emphasize again that the second and
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Figure 4.2. Transient evolution of an initially empty Anderson dot, ρ0 = |0〉〈0|, with
the same parameters as in Fig. 4.1 and U = 0. (a) Trace distance D(ρ

(2)
G,bare(t), ρexact(t))

between the second order bare time-local solution and the exact solution. (b) Trace
distance D(ρ

(4)
G,bare(t), ρexact(t)) between the fourth order bare time-local solution and the

exact solution. Areas inwhich the approximate state is not positive are shown in gray. In
this case there are no areas where the approximated state is positive, but the propagator
is not completely positive.
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fourth order time-local solutions, ρ
(2)
G,bare(t) and ρ

(4)
G,bare(t) respectively, will be different

from the time-nonlocal solutions of the same order: ρ
(j)
G,bare(t) 6= ρ

(j)
K,bare(t). The general

characteristics however stay the same: higher temperature improves the quality of the
approximations and ρ

(4)
G,bare(t) outperforms ρ

(2)
G,bare(t). Compared to the time-nonlocal

perturbation theory there arehowever considerabledifferences: The areawhere ρ
(2)
G,bare(t)

is unphysical is noticeably smaller than for ρ
(2)
K,bare(t). Furthermore, ρ

(4)
G,bare(t) is even

physical everywhere in the plotted parameter regime. Surprisingly this is even true
for strong interactions, for example of the order U ≈ 10Γ. Notably, neither ρ

(2)
G,bare(t)

nor ρ
(4)
G,bare(t) shows deceptive regimes where the state is positive, but the propagator

is nevertheless not completely positive. These observations suggest in a very basic way
that for the Anderson model the bare time-local perturbation theory is superior to the
time-nonlocal one, even for the strong interaction.

4.3.2 | Renormalized expansions – Failure of the time-local approach

Renormalized perturbation theory for the memory kernel K
In Eq. (4.21) the occurrence of the time-local δ̄ function in the γ+

ησ contraction hints at
possible simplifications. The startingpoint lies in the observation that theγ−ησ contraction
vanishes when taking the high-temperature limit for all reservoirs, limTr→∞ γ−ησ = 0.
Then the infinite temperature kernel is exactly given by limTr→∞KN(t) = Σ∞ δ̄(t) with

Σ∞ := − i
2 ∑

rησ

ΓrσG+
ησG−η̄σ. (4.24)

Thus the time-nonlocal part of the kernel becomes time-local in this limit and we thus
see that the total time-local Liouvillian

L∞ := L + Σ∞ (4.25)

generates the GKSL semigroup dynamics of the model at infinite temperature [136],

Π∞(t) := lim
Tr→∞

Π(t) = e−iL∞t. (4.26)

Choosing KL = L∞ we want to compute the corresponding nonlocal part denoted by
KN = Σ, i.e., the total memory kernel is given by

K(t) = L∞δ̄(t) + Σ(t). (4.27)

Interestingly all the time-local γ+
ησ contractions can be resummed exactly and one obtains

a renormalizedperturbation theory forΣ [23, 136]. Todo so the diagrammatic rules have to
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be changed as follows: first, only γ−ησ contrations and superfermionic creation operators
G+

ησ are allowed. Second, all of the intermediate free propagators Π0 are replaced by
infinite temperature propagatorsΠ∞. Thus the first terms of−iΣ(t) are the renormalized
versions Eqs. (4.20a)–(4.20c):

=−∑
ησ

γ−ησ(t)G
+
ησe−iL∞tG+

η̄σ, (4.28a)

= ∑
η1σ1

∑
η2σ2

∫ t

0
dt1

∫ t1

0
dt2γ−η1σ1

(t)γ−η2σ2
(t1 − t2)

× G+
η1σ1

e−iL∞(t−t1)G+
η2σ2

e−iL∞(t1−t2)G+
η̄2σ2

e−iL∞t2 G+
η̄1σ1

, (4.28b)

=− ∑
η1σ1

∑
η2σ2

∫ t

0
dt1

∫ t1

0
dt2γ−η1σ1

(t− t2)γ
−
η2σ2

(t1)

× G+
η1σ1

e−iL∞(t−t1)G+
η2σ2

e−iL∞(t1−t2)G+
η̄1σ1

e−iL∞t2 G+
η̄2σ2

. (4.28c)

Notably, the renormalized perturbation theory is at the same time more powerful
and simpler than the original one: since γ+ contractions are no longer allowed, there
are considerably fewer terms in the renormalized perturbation theory that need to be
computed. Moreover, a finite number of terms of the renormalized series gives the exact
solution in three different physical limits: By construction it is exact in the limits of
vanishing coupling Γ → 0 or infinite temperature T → ∞, but it can be shown that it is
additionally exact in the non-interacting limit U → 0 [1, 136] for any Γ and T, which is
not the case in any finite order bare perturbation theory in Γ.

Compared to the bare perturbation theory the intermediate propagations between
vertices are damped on a timescale of the bare tunnel rate ∼ Γ−1 [Eq. (4.24)], which
leads to improved convergence in the time integrations. Since this is the largest rate of
decay, the higher order corrections of the renormalized perturbation theory are needed
for smaller rates, i.e., they must effectively suppress decay. One thus expects that in the
lower orders of this perturbation theory the oscillations described by L are damped.

For the explored parameters, we find that even for strong interactions the renormal-
ized fourth order solution ρ

(4)
K,ren always stays physical (same parameters as in Fig. 4.3 (d),

data not shown). This is however not the case for the second order renormalized solution
ρ
(2)
K,ren, which becomes unphysical at low temperatures, even for U = 0 (data not shown).

Larger interaction has a negative impact on the positivity of ρ
(2)
K,ren.

In Fig. 4.3 (a,e,f) we see that overall compared to the bare K perturbation theory the
renormalized version replaces oscillatory behavior occurring off resonance (ε & Γ) at
low T . Γ by a rapid decay to the stationary value. We discuss the details in the next
section.
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Renormalized perturbation theory for the time-local generator G
We now set up a corrresponding approach for the time-local generator, which to our
knowledgehasnot been exploredyet. The renormalized expansionofK canbe translated
to the generator G using the same steps as for the bare G expansion [Eqs. (4.22)–(4.23)].
Compared to Eqs. (4.22)–(4.23) one now uses the renormalized K and Π diagrams,
where only G+

ησ vertices are allowed and the renormalization L → L∞ = L + Σ∞ is
made. Importantly, one thus also needs to replace the backward evolutions by

Π†
0(t) = eiLt → eiL∞t = Π−1

∞ (t). (4.29)

For theU = 0 limit this implies that because the renormalized series forK terminates
at fourth order to give the exact result, the fourth order generator G = L∞ + G(2)ren + G(4)ren

is also exact at U = 0. Surprisingly however, it turns out that at U = 0 the fourth order
contribution also vanishes, G(4)ren = 0, which we verify in App. E. Thus, we conclude that
the leading-order renormalized generator G = L∞ + G(2)ren is already exact for U = 0, one
order lower then for the memory kernel K = L∞δ̄ + Σ(2) + Σ(4).

In Fig. 4.3 we compare the different fourth order methods. In Fig. 4.3(a) we show
results at low temperature T < Γ and small interaction U < Γ. We see that the renor-
malized solutions coincide, but clearly differ from the bare solutions, which are distinct.
Initially the bare solutions also coincide (up to tΓ ' 1) and decay like the renormalized
ones, but at a smaller rate. They then start to oscillate while their renormalized counter-
parts have already reached their stationary values. The stationary values are similar for
all methods. We focused on the off resonant case ε > Γ > U ' T since here the fourth
order corrections are important, also in the renormalized methods.

In Fig. 4.3(b) we verify that at the symmetry point ε = −U/2 the occupations
converge to the same stationary value n↑ = n↓ = 1

2 as they should by symmetry.
However, the bare K solution predicts an oscillation, which is not predicted by the
other methods. By contrast, the bare G method agrees with the renormalized methods
showing no oscillations, even though U = 10Γ is rather large.

It is thus interesting to consider less constrained parameters with detuning ε & Γ
in the tail of the resonance. For U > Γ we find that at high temperature, T > 5Γ, all
methods coincide for these parameters. However, in Fig. 4.3(c) we see that already for
T = 2Γ the renormalized G method predicts a different stationary occupation.

When lowering the temperature further in Fig. 4.3(d) we see that all methods after
the initial rise predict decay (tΓ & 1

2 ), except that the renormalized G method gives
a larger rate. Whereas the renormalized K method reaches stationarity after this, all
other methods show similar overdamped oscillations. Because for the renormalized G
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Figure 4.3. Interacting Anderson dot with µL = µR = 0: level occupation (〈n↑〉 = 〈n↓〉)
from the initially unoccupied state ρ0 = |0〉〈0|. (a) Weak interaction, low temperature.
(b) Strong interaction and low temperature at the symmetry point. (c)-(f) Strong inter-
action with decreasing temperatures off-resonance.

method the initial decay is slower and last longer, this oscillation is out of phase with the
other ones. Furthermore, it can be seen that every method predicts a different stationary
value.

This picture persists when temperature is lowered further in Fig. 4.3(e)-(f). The
abovementioneddampedoscillationsgrow,whereas the renormalizedKmethod further
reduces the stationary value without introducing oscillations. The renormalized G
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method instead features pronounced oscillations with a visible second harmonic and
an approximately π

2 phase shift. At T = 0 the oscillations of the bare solutions even
show negative damping, diverging at long times. This means that one of the complex
frequency poles of the propagator has moved into the unphysical part of the complex
plane [24] and the stationary state is never reached.

The fact that the oscillations in Fig. 4.3(e)–(f) don’t quickly decay for the renormal-
ized G method may seem surprising at first, since the renormalized propagator Π∞

[Eq. (4.26)] overdamps oscillatory contributions to the dynamics as mentioned earlier.
However, this is counteracted by insisting on a time-local formulation of the renormal-
ized approach. This is immidiately clear from our central result Eq. (4.2)–(4.4): in a
renormalized expansion with decaying free reference evolution the partial backward
time integration will partially undo this decay.

Another way of seeing that time locality is the problem here, is by considering the
formal definition of the generator G = iΠ̇Π−1. In order to obtain any perturbative
series for G it is necessary to expand the inverse propagator Π−1. For the renormalized
expansion Eqs. (4.2)-(4.4) this involves expanding

Π−1 =
[
Π∞ + Π(2)

ren + Π(4)
ren + · · ·

]−1
(4.30)

=Π−1
∞ −Π−1

∞ Π(2)
renΠ−1

∞ + · · · . (4.31)

Since Π∞ contains oscillating and decaying contributions (from L and Σ∞ respectively
[Eq. (4.26)]), it follows that Π−1

∞ is exponentially increasing in time. However, the
geometric series is only guaranteed to converge if∥∥∥Π−1

∞

(
Π(2)

ren + Π(4)
ren + · · ·

) ∥∥∥ < 1. (4.32)

Because Π(2)
ren(t) + Π(4)

ren(t) + · · · → Π(2)
ren(∞) + Π(4)

ren(∞) + · · · converges to a stationary
(non-zero) value, condition (4.32) is violated after a short time and the time local genera-
tor becomes problematic. Note carefully that only for U = 0 no problems arise with the
renormalized G, because higher order corrections are identically zero by the algebraic
structure of the model [App. E] and convergence of G is not an issue. By contrast, in the
bare perturbation theory for G this problem did not occur, because the unitary reference
evolution

∥∥Π†
0

∥∥ is always bounded. This shows that the application of renormalized
perturbation expansions is much more subtle in the time-local framework than in the
time-nonlocal one. This seems to be a generic problem of any perturbative expansion
of G around a reference solution that already incorporates some dissipative/decaying
behavior. This is, however, a key idea behind renormalization strategies for open sys-
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tem [23, 24, 27, 29, 30], which through their use of the kernel K suffer no such failure. It
remains an intriguing open questions whether similar schemes can be developed for G.

4.4 | Summary
We have shown that the fixed-point relation (3.4) between the memory kernelK and the
generator G implies a recursive relation between time-local and time-nonlocal perturba-
tion series based on the common expansion referenceKL. This relation can be exploited to
set up calculations of these quantities irrespective of the chosen technique (diagrammat-
ics, projection operators, etc.). Importantly, it allows for an unbiased comparison of the
different approximations that result when performing the same expansion in a time-local
or time-nonlocal picture, independent of model specifics. The flexibility in the choice of
expansion reference KL allows to compare bare expansions with renormalized ones.

For the bare expansion (KL = L = [H, •]) discussed in Sec. 4.3.1, we developed a
diagrammatic technique for computing the time-local generator G, in close analogy to
the well-developed technique for the memory kernel K. Judging by the very basic crite-
rion of legitimacy of the approximate propagator (complete positivity), performing the
expansion in the time-local formulation leads to a better behaved solution in application
to strongly interacting open systems than performing the corresponding expansion in
the time-nonlocal one. Combined with its inherent advantages in addressing questions
related to non-Markovianity [18, 19, 43, 44, 146] and quantum information, this suggests
that the time-local approach, made more accessible here via the standard time-nonlocal
one, can be a useful alternative to the existing time-localmethods [34–36, 38, 93, 112, 113].
We also note that for the time evolution of transport observables – measured outside the
system – similar memory kernels can be calculated using the same standard techniques
that we used [23, 24]. The present paper also provides a starting point for transposing
these techniques to the time-local calculation of transport observables.

For the renormalized expansion (KL = L∞ = L+Σ∞) thatwe additionally developed
in Sec. 4.3.2 this advantage of G over K at first seems to be confirmed. Expanding
about the infinite temperature limit, we found that in the time-local framework the non-
interacting Anderson dot is exactly solved by the leading order result, one order lower than
in the time-nonlocal framework. However, in the presence of interaction the unbounded
growth of the dissipative backward evolution with time leads to problems. We noted that
the expansion of the inverse propagator, implicitly required by the expansion of the
time-local generator is questionable on times of the order of the inverse decay rate Γ−1.

As explained in Sec. 3.3, the versatile fixed-point equationmay provide an additional
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route to a renormalized time-local approach: Noting that the renormalized time-nonlocal
approach allows to obtain an approximate Kpert, iteration of the fixed-point functional
(3.5) can be used to obtain an equivalent time-local generator Gsc, which self-consistently
accounts for the backward evolutions. This provides an approximationdifferent from the
truncated renormalized approach to G explored here following the traditional approach
of expanding G itself. We thus illustrated how the fixed-point relation can be used to
transpose standard memory kernel techniques to the interesting but more challenging
time-local framework. Overall, our systematic comparison of the time-local and time-
nonlocal framework highlighted their complementary merits and limitations.
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5

T-flow renormalization group

Aswe have seen in Chap. 4 the physics of open quantum systems is well understood and
characterized in the limits of weak coupling or high temperature: Here the dynamics
is memoryless, giving rise to Markovian semigroup dynamics governed by the GKSL
quantummaster equation [Sec. 2.2.1]. As the temperature is lowered towards the system-
reservoir coupling scale, the dynamics is no longer well described by a semigroup. The
required non-semigroup corrections are often unproblematic to compute using the well-
developed (bare) perturbation expansions of either the memory kernel or the time-local
generator [Sec. 4.3.1], as long as the temperature is kept sufficiently high.

In contrast, the description of physics at low temperatures, strong coupling and large
interactions remains challenging and is the subject of this chapter. Aswe saw in Sec. 4.3.2
approximate memory kernel calculations could be improved beyond the standard bare
perturbation theory by systematically expanding around the high-temperature limit,
which already includesdissipativebehavior into the reference solutionof the series. Here
we pursue this development further and introduce the T-flowmethod. It allows to com-
pute the memory kernel using the physical temperature T as a renormalization-group
flow parameter starting from T = ∞, where the evolution is a GKSL-semigroup [135,
136] with simple jump operators [1, 3]. The basic idea is to obtain the low-temperature
dynamics by lowering the physical temperature of the system’s environment in small
steps and systematically computing the memory kernel corrections that this generates.
For this task the renormalized perturbation expansion from Sec. 4.3.2 forms the natural
starting point. We show how it can be combined with key techniques of the E-flow RG
scheme discussed in Sec. 1.3: by simply taking a T derivative (instead of an E deriva-
tive) of the full diagrammatic series for the memory kernel and the effective vertices
one obtains a self-consistent hierarchy of differential equations, which can be systemat-
ically approximated while self-consistently keeping full time-propagators between the
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effective vertices.
In contrast to the E-flow RG method, we can formulate everything directly either

in the time or frequency domain. Here we focus on numerically solving the T-flow
RG equations in time space for the example of an interacting Anderson dot [Sec. 4.3].
Notably, in doing so we automatically generate solutions for all temperatures. One
thus works directly in terms of the temperature dependence of relevant time-evolving
quantities, which are closely connected to the many-body physics of interest and their
experimental signatures. Clearly, this built-in feature of the T-flow is of special interest
for thermoelectric calculations which are, however, beyond the scope of the present
work.

The chapter is organized as follows. In Sec. 5.1we connect the time correlations of the
environment to the key idea of the T-flow to provide some physical intuition for the later
technical developments. We then derive the T-flow equations for the memory kernel
in Sec. 5.2 borrowing techniques from the E-flow scheme. The computation of nonlocal
observables, in particular particle-currents, is discussed in Sec. 5.3. Our first results are
presented in Sec. 5.4, focusing on charge currents, occupations and charge fluctuations
after verifying the legitimacy of the computed propagators (complete positivity). We
investigate the reliability of our approach by comparison with various other methods
and as a first applicationwe investigate the impact of the interaction on the phenomenon
of reentrant charge decay, which we predicted in Ref. [1]. We summarize and point out
future directions in Sec. 5.5 and discuss relations of our technical results to the broader
understanding of memory effects in open quantum systems [122].

5.1 | Temperature as flowparameter: Time correlations
We first consider for simplicity a system in contact with a single environment, the
latter initially in equilibrium at temperature T. As mentioned in the introduction, the
basic idea of the T-flow is to calculate low-temperature dynamics by literally lowering
the temperature of the environment step-by-step. To develop some intuition for this
we focus on the environment correlations, similar in spirit to Wilson’s RG for critical
systems [70] with the key difference that correlations in time – instead of space – are
at the focus. In particular, the temperature T sets the inverse correlation time, which
is effectively encoded into a single temperature-dependent correlation function γ−(t, T)
[Eq. (4.21b)].

Following Wilson’s idea we set up a flow from the high-temperature limit where
the correlations are short-ranged (γ− = 0 for T → ∞) to one with long-ranged power
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laws (γ− ∝ 1/t for T → 0). Thus, in the low-temperature regime of interest dif-
ferent time scales contribute equally when integrating power law correlations (e.g.∫ 10t

t dt′/t′ = ln 10 independent of t) to compute the dynamics. An important differ-
ence with Wilson’s RG is that we do not introduce an artificial flow parameter into the
description, but instead use a variable that is already part of the problem. This is similar
in spirit to the E-flow RGmethod for open quantum systems [27], which by choosing the
Laplace variable E as flow parameter is intrinsically bound to the frequency domain, in
the sense that only at the end of the calculation one can go to the conjugate time-domain.
By instead choosing the physical environment temperature T we remain flexible to work
in either domain.

Whereas at high temperatures the dynamics can be computed via a memory kernel
Σ using perturbation theory, this becomes unreliable at low temperatures, because the
slowly decaying correlations amplify higher order contributions requiring a more sys-
tematic treatment. In the T-flow this is done by integrating out thermal fluctuations
in many small steps δT, as opposed to treating the entire correction T = ∞ → 0 in
one piece. Thus the reduction of thermal fluctuations generates effective higher-order
coupling effects. These corrections are controlled by the temperature sensitivity of the
correlation function, ∂Tγ−. A key observation is that this quantity never behaves as a
power law in time and even vanishes at T = 0 for all times, in contrast to γ− itself which
is divergent for t → 0 and slowly decaying for t → ∞. In this sense, the computation of
the temperature sensitivity of the memory kernel, ∂TΣ, is better behaved than that of Σ
itself. This is very similar to the calculation thememory kernel in the E-flowmethod [27].

At this point it is important to note that we do not change temperature as function of
time. Insteadwe consider the entire dynamics – via its memory-kernel – at temperatures
T and T − δT when we stepwise lower the temperature. Proceeding this way it is
by no means obvious that we do not pass through T = 0 and continue to negative
temperatures. However, the above mentioned properties of the temperature sensitivity
of the correlation function ensure that this does not happen: as we will see, the T-flow
terminates at the fixed point T = 0:

lim
T→0

∂Σ
∂T

(t, T) = 0. (5.1)

Finally, before turning to the technical implementation, we highlight that because in
our T-flow method temperature itself serves as a flow parameter it does not play the
role of a cut off in the technical RG sense (there is no other running energy scale). This
should not be confused with the fact explained above that temperature sets the inverse
correlation time beyond which time integrations stop contributing, i.e., it does cut off
time integrations in the ordinary non-RG sense (time is not a flow parameter).
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5.2 | T-flow RG equations for the memory kernel

Reservoirs at the same temperature T

We are now ready to derive the self-consistent T-flow equations for ∂TΣ, which allows
us to lower the temperature, schematically via Σ(t, T − δT) = Σ(t, T)− ∂TΣ(t, T)δT, in
small steps δT. This is inspired by the derivation of the E-flowmethod [27], in particular
by the definition of the effective vertices and the usage of full propagators between them.
For simplicitywe first consider the casewhere all reservoirs have a common temperature
Tr = T while allowing for arbitrary applied bias V = µL − µR. We are thus considering
transient dynamics to a non-equilibrium stationary state.

We start from the diagrammatic representation of the renormalized perturbation
series for the memory kernel [see Sec. 4.3.2]:

−iΣ = + + + · · · . (5.2)

We first bring the renormalized series in self-consistent form by resumming all con-
nected subblocks without uncontracted lines, thereby replacing infinite temperature
propagators Π∞ by full ones represented by double lines, Π ≡ . We then have

−iΣ = + + · · · . (5.3)

Thus for example, the third term of Eq. (5.2) is already contained within the first term
of Eq. (5.3) and so on. Next, we introduce effective n-point supervertices G1...n as sums
over all connected diagrams with n uncontracted lines. Specifically we will need

G1 ≡ := + + + · · · , (5.4)

G12 ≡ := + · · · . (5.5)

Note that the T-dependent effective supervertex G1 (without superscript) differs from
the T- independent superfermion G+

1 (the first term in (5.4), defined by Eq. (4.13) with
p = +) by finite-temperature corrections. Some remarks are necessary tomake the above
definitions more precise and these are given in App. F. Importantly, one can express G1

using G12 and Π in a self-consistent manner as

= + + + . (5.6)

This can be seen in the following way: cutting off the leftmost vertex in each term of
Eq. (5.4) from the rest of the diagram (except in the trivial first term), the remaining
part on the right will have two uncontracted lines and will either be disconnected or it
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will remain connected. In the former case the diagram before cutting will be included
in the second term in Eq. (5.6), whereas in the latter case it must belong either to the
third or fourth term. By this way of sorting, all diagrams are included without double
counting. Combining Eqs. (5.3)–(5.4), we see that the memory kernel can be expressed
using effective supervertices as

−iΣ = (5.7)

Note that the resummation to full propagators performed to obtain Eq. (5.3) is crucial
for Eqs. (5.7) to hold.

Taking a T derivative of Eq. (5.7), which we diagrammatically represent using a
slashed line, we obtain the key relation

−i
∂Σ
∂T

= + + . (5.8)

The first term contains the temperature derivative ∂Tγ− (slashed contraction) given by

∂γ−ησr

∂T
(t, T) =

iΓrσeiη̄µrt

sinh(πtT)

[
πtT

tanh(πtT)
− 1
]

(5.9)

∼ iΓrσeiη̄µrtπtTe−πtT

{
1
3 for t� T−1

2 for t� T−1 . (5.10)

which is explicitly divergence free. As mentioned in Sec. 5.1, it never behaves as a power
law and even vanishes identically as T → 0. The second term of Eq. (5.8) contains the
temperature derivative of the propagator ∂TΠ ≡ . We show in App. G that this is
connected to the T derivative of the memory kernel via

∂Π
∂T

= −iΠ ∗ ∂Σ
∂T
∗Π, (5.11)

where ∗ denotes time convolution. This turns Eq. (5.8) into a self-consistent equation
for ∂TΣ. The third term of Eq. (5.8) requires the temperature derivative of the effective
supervertex ∂TG1. It can be obtained by differentiating (5.6). Here the two-point vertex
∂TG12 enters, which can only be expressed in an exact manner using three-point ver-
tices ∂TG123 and so on. This way a hierarchy of self-consistent differential equations is
obtained.

Approximations within the above general T-flow scheme consist in truncating this
hierarchy. To do so we count the number of bare vertices present in each term, which
keep track of the number of contraction functions γ− in which we are expanding. For
example, the first and second term of Eq. (5.3) are counted as O(G+2

) and O(G+4
),

respectively. In this first implementation of the method we will keep all terms in the
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vertex equations such that Eq. (5.8) consistently includes all terms of orderO(G+6
). This

means that the T-flow vertex equations are

= + + + +

+ + + + +O(G+7
), (5.12)

= +O(G+6
). (5.13)

Eq. (5.8) together with Eqs. (5.12)–(5.13) constitute the main result of this chapter. They
form a closed set of self-consistent differential equations for the memory kernel Σ and
the effective supervertices G1 and G12 as function of temperature T.

The above derived T-flow is started at some high, but finite temperature T∞ < ∞,
where initial conditions are obtained straightforwardly using the renormalized per-
turbation theory: we first compute the next-to-leading order memory kernel Σ(T∞)

[Eqs. (4.28a)–(4.28c)], which is then used to solve the corresponding time-nonlocal quan-
tum master equation giving the propagator Π(T∞). Inserting Π(T∞) into the first two
terms of Eq. (5.4) gives an initial value for the supervertex G1(T∞). Similarly the first
term of Eq. (5.5) is used to compute G12(T∞).

Using Eq. (5.9) it is now easy to see that the T-flow reaches a fixed-point at T = 0
[Eq. (5.1)]: taking a T derivative of the renormalized perturbation series (5.2) for Σ each
summand contains exactly one ∂Tγ−ησ factor, which vanishes for all times t ≥ 0 as T → 0
as discussed. This implies that limT→0 ∂TΣ(t, T) vanishes.

Finally, we mention that the t = 0 singularity in the contraction γ− never contributes
explicitly in Eq. (5.8). This is because in the first term only a non-singular slashed
contraction ∂Tγ−ησ enters. Furthermore, we show in App. H that in the second and
third term the singularity is always compensated. Thus, provided the initial propagator
is time-non-singular, it will remain so during the T-flow making the approach well
behaved and suitable for numerical calculations. This is indeed the case for Anderson-
like models considered here, since the initial propagator is computed using next-to-
leading order renormalized perturbation theory, for which the singularity is canceled
out by the anticommutation of the superfermions [App. D].

Reservoirs at different temperatures Tr

The T-flow as presented above can be generalized to the case where each reservoir
has a different temperature Tr. For this discussion it is useful to collect all temper-
atures into a single vector ~T = (T1, T2, . . . , Tn). The T-flow is then started at high,
but finite temperatures ~T∞ = (T∞,1, T∞,2, . . . , T∞,n), allowing us to compute an accurate
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initial condition using the renormalized perturbation theory. We next chose a path
~T(α) = (T1(α), T2(α), . . . , Tn(α)) in this n dimensional temperature space parameterized
by α : 0 → 1, passing through the temperature-biased configurations of interest. If we
denote by ~T0 the final target configuration of the reservoir temperatures (above ~T0 =~0)
then ~T(α = 0) = ~T∞ and ~T(α = 1) = ~T0. The case from the main text, where all reser-
voirs are cooled at the same rate, corresponds to ~T(α) = ~T∞ + α(~T0− ~T∞). Alternatively
we could keep T2, . . . , Tn fixed while cooling T1, and afterwards cool T2 etc..

To generalize the T-flow equations we replace all derivatives

∂T → ∂α = ∂~T/∂α · ∇~T (5.14)

in Eqs. (5.8)–(5.13). For example, slashed contractions now denote

∂γ−ησ

∂α
= ∑

r

∂Tr

∂α

iΓrσeiη̄µrt

sinh(πtTr)

[
πtTr

tanh(πtTr)
− 1
]

. (5.15)

Note that the slashed propagator is now given by the relation

∂αΠ = −iΠ ∗ ∂αΣ ∗Π (5.16)

[cf. (5.11)]. With these conventions the same diagrammatic rules apply, which makes
the implementation of the T-flow for distinct temperatures straightforward. Finally, we
point out that closed temperature loops have no thermodynamic meaning here, because
we are not lowering temperature in time (each RG step computes an entire evolution).

5.3 | Computation of the current kernel
Whereas the memory kernel can be used to compute the density operator and thus
expectation values of local observables, it is not sufficient to determine expectation values
of nonlocal observables such as transport quantities. For these additional observable-
kernels are needed [23]. Here we will focus on the particle current flowing out of
reservoir r defined by Ir(t) := −∂t〈Nr〉tot(t), which can be obtained using a current
kernel KIr via

Ir(t) = −i Tr
∫ t

0
dsKIr(t− s)ρ(s). (5.17)

Similarly to the the ordinary memory kernel K [cf. Eq. (4.27)] we can decompose

KIr(t) = ΣIr ,∞δ̄(t) + ΣIr(t). (5.18)
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Here the first term is time-local due to the wideband limit and gives the infinite temper-
ature part of to the current-kernel. This term corresponds to the renormalization (4.25)
of the kinetic equation that we performed to obtain the exact result at T = ∞. When it is
applied to a finite-T state, we obtain a contribution to the current expectation value that
probes the deviation of the spin-orbital occupations from half filling,

Ir,∞(t) := −i Tr ΣIr ,∞ρ(t) (5.19)

= −1
4

η1Γrσ1 Tr G−1 G−1̄ ρ(t) (5.20)

= ∑
σ

Γrσ

(
1
2
− 〈nσ〉(t)

)
. (5.21)

Note that limt→0+ Ir(t) = Ir,∞(0) 6= 0 in general: the current instantly rises at t = 0
(no coupling) to a finite value because we are working in the wideband limit. For large
but finite bandwidth D the current approaches our result on the very short timescale
1/D [136, 172, 173].

The time-nonlocal current-kernel ΣIr can be computed using the same diagrammatic
series that is used for Σ, except that the leftmost vertex and its contraction need to be
replaced [23]. In the superfermionic notation we use here this amounts to replacing the
leftmost G+

ησ → η
2 G−ησ and γ−ησ → γ−ησr. Given the effective vertex, which we obtain from

the T-flow memory kernel computation, we can therefore automatically compute the
current kernel as

−iΣIr = , (5.22)

where we use a cross to indicate the replaced vertex. It is therefore not necessary to
compute the current kernel in a separate RG flow.

5.4 | Application: Interacting quantum dot
Here we first show explicitly how the T-flow recovers the known exact solution at
U = 0 [136]. After that we present results obtained by numerical solution of the T-
flow equations for non-zero interaction U, whose implementation details are discuss in
App. I. We mainly focus on transport observables but emphasize that we have checked
that every computed propagator is a completely positive map at each time t, a basic
criterion for the physicality of an approximation as explained in Sec. 2.1.
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5.4.1 | Exact solution at U = 0

Herewe show how the T-flow equations (5.8) and (5.11)–(5.13) recover the exact solution
for the non-interacting spin-degenerate Anderson dot. The main simplification in this
case is that all terms with more than four creation superfermions vanish for algebraic
reasons as discussed in Ref. [1, 4, 136]. Therefore the infinite T-flow hierarchy terminates
at finite order and is completely contained in the contributions of the main text. In fact
they simplify to

−i
∂Σ
∂T

= + + , (5.23)

= (5.24)

In the second term of Eq. (5.23) we can use a bare vertex (instead of an effective
one) and in the third term a bare propagator Π∞ (instead of a full one) because the
corrections to this are of order O(G+6

) and vanish algebraically. For the same rea-
son Eq. (5.24) only contains bare vertices and propagators. With the initial condition
G1(T = ∞, t− τ, τ − s) = G+

1 δ̄(t− τ)δ̄(τ − s) for the supervertex we can immediately
integrate (5.24), since only the contraction depends on temperature:

= + . (5.25)

Note that the first term is equal to the initial condition and contains two δ̄ functions of
time not indicated diagrammatically. Insertion of G1 [Eq. (5.25)] and ∂TG1 [Eq. (5.24)]
into the first and last term of (5.23) respectively, gives

−i
∂Σ
∂T

= + + + (5.26)

= + + + + ,

(5.27)

where in the third term of the first line we again replaced a full propagator by a bare
one. In the last line we inserted the expansion of the full propagator and its temperature
derivative [Eq. (5.11) with (5.23)] using that all orders greater than O(G+4

) vanish
algebraically. With the initial condition Σ(T = ∞) = 0 we can integrate the last equation
and recover the exact memory kernel for the U = 0 Anderson dot

−iΣ = + + . (5.28)

This is the result computed in Ref. [136] [Eq. (123), Sec. 4 and App. F loc. cit.], where the
full solution is analyzed in detail, see also Ref. [1].
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5.4.2 | Stationary limit – Benchmarks and charge fluctuations

We first consider the stationary limit for the purpose of benchmarking, stressing right
away that this is not the limitwhere a real-time formulation is supposed to be particularly
advantageous. For this reason, we need to restrict our attention to bias V ≥ Γ, since for
smaller bias the stationary limit is reachedonly at relatively large times,which is of course
challenging when working in the time-domain. We consider the dot at the particle-hole
symmetric point ε = −U/2 connected to two reservoirs r ∈ {L, R} with temperature
TL = TR = T under a symmetric bias µL/R = ±V/2 with Γrσ ≡ Γ independent of r and
σ. For sufficiently low temperatures the Kondo effect becomes important and renders
both bare and renormalized perturbation theory computations unreliable.

In Fig. 5.1(a) we compare the obtained stationary current Istat as function of V for
T = 0 with results from the functional renormalization group (fRG), time-dependent
density matrix renormalization group (tDMRG) and real-time quantum Monte Carlo
method (QMC) reported in Refs. [174–176]. We find very good agreement with all four
methods for U = 2Γ and U = 4Γ. At U = 8Γ we see that the currents predicted by our
method are very close to the QMC ones, but slightly higher than the currents of fRG and
tDMRG. The agreement with QMC persists for U = 10Γ noting that for this value no
fRG and tDMRG data were reported in Ref. [176].
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Figure 5.1. Stationary current at the symmetry point ε = −U/2. (a) Comparison of the
stationary current Istat at T = 0 as function of bias V between the T-flow method, fRG,
tDMRG and QMC. (b) Stationary current as function of temperature.

In Fig. 5.1(b) we show the stationary current as function of temperature. Here each
curve is efficiently obtained within a single T-flow renormalization group trajectory. We
find that the current is monotonically increasing as T is lowered. The asymptotic current
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for high temperatures is independent of ε and U and given by

Istat =
ΓV
4T

if T � Γ, ε, U, V, (5.29)

which can be derived from a high T expansion of the leading order memory and current
kernels (4.28a) and (5.22).

In Fig. 5.2 we show the stationary charge fluctuations (∆n)2
stat :=

〈
n2〉

stat − 〈n〉
2
stat .

Because the stationaryoccupation at the symmetrypoint equals 〈n〉stat = 1, it follows that
the stationary charge fluctuations are related to the stationary occupation-correlation as

(∆n)2
stat = 2〈n↑n↓〉stat. (5.30)

The behavior for high temperatures can be analytically calculated from Eq. (4.28a) to be

(∆n)2
stat(T) =

1
2

(
1− 4ε + 3U

4T

)
for T � Γ, ε, U, V, (5.31)

which we stress also holds if the system is not at the particle hole symmetric point. The
temperature dependence is shown in Fig. 5.2(a): Whereas the curves for different bias V
merge at high T into the limiting curve (5.31) [inset], the fluctuations at small tempera-
tures are suppressed as expected by Coulomb blockade. However, the fluctuations hit a
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Figure 5.2. Stationary charge fluctuations (∆n)2
stat as function of temperature forU = 8Γ,

ε = −U/2 and several bias voltages. (a) Low and intermediate temperature regime.
Inset: High temperature regime. (b) Scaling of the fluctuation for T � Γ.

global minimum at finite T, which is especially noticeable for small V, after which they
increase again. For the chosen parameters this minimum occurs at T ≈ 0.4Γ for V = Γ
and then moves towards lower temperatures with increasing V. We attribute this en-
hancement of charge fluctuations at small T and V to the onset of the Kondo effect which
in the T-flow method requires an account of time-correlations on increasingly larger
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time scales as temperature is decreased. Since a large bias suppresses the Kondo effect,
the finite temperature minimum of the fluctuations should become less pronounced at
larger V, which indeed can be seen. Fig. 5.2(b) shows that for the chosen parameters the
fluctuations scale as

(∆n)2
stat(T) = (∆n)2

stat(T = 0)
[

1− c
T2

Γ2

]
if T � Γ, (5.32)

where the constant c depends on U and V. This T2 scaling is ubiquitous for the Kondo
effect in the low temperature Anderson model and appears for example also in the
conductance as function of V or T (for V, T . TK) [27, 177].

5.4.3 | Transient effects – Currents, T-independence and reentrance
We now turn to the transient dynamics. Here we find quite generally that the short time
behavior of the propagator is independent of temperature. This contribution stems not
just from the leading-order infinite-temperature limit, but additionally from the initial
temperature-independent part the memory kernel: For small times δt we have

Π(δt) =Π∞(δt)− i
2

Σ(t = 0)δt2, (5.33)

where for conciseness we have not expanded the first term, with the temperature-
independent zero-time kernel

−iΣ(t = 0) =
2
π

ΓG+
1 L∞G+

1̄ +
2
π

Γ ∑
rσ

µrG+
+σG+

−σ. (5.34)

Here the second term does not contribute for symmetric bias µL = −µR considered
here. This T-independence means that there is no T-flow of the propagator at short
times δt � Γ−1. As a consequence all local observables are initially insensitive to
temperature as, for example, the occupations

〈nσ〉(δt) =
1
2
− e−2Γδt

(
1
2
− 〈nσ〉ρ0

)
+

[
U
(

1
2
− 〈nσ̄〉ρ0

)
− U + 2ε

2

]
Γ
π

δt2, (5.35)

where again we do not expand the exponential for conciseness. Here the first two terms
describe decay to half filling coming from the infinite temperature propagator in (5.33).
The third and fourth terms add quadratic corrections depending on the initial deviation
of nσ̄ from half filling and the level deviation from the symmetry point. This is shown in
Fig. 5.3, where the transient occupation 〈n〉(t) = 〈n↑〉(t) + 〈n↓〉(t) is plotted for several
temperatures. Because the initial evolution is T-independent as explained above and
the stationary occupation is fixed by the particle-hole symmetry, temperature can only
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Figure 5.3. Transient occupation 〈n〉(t) for U = 4Γ, ε = −U/2, bias V = Γ and
several temperatures. Initially the dot is empty, ρ0 = |0〉〈0|. We note that the O(δt2)
contributions of Eq. (5.35) are negligible here, but can play a role, see Fig. 5.5.

affect the intermediate occupations. A noticeable detail of this crossover from weak to
strong coupling is that for this moderate value of the interaction the occupation slightly
overshoots its stationary value 〈n〉stat = 1 for the lowest temperatures, but this effect is
lost already for U = 8Γ (not shown).

Interestingly, for non-local observables the short-time behavior may also be temper-
ature independent. An example is the particle current plotted in Fig. 5.4. Similar to the
decomposition (5.33) there are contributions from both the infinite temperature current
and the T-independent zero-time current-kernel, e.g., for the left reservoir:

IL(δt) =IL,∞(δt)− i Tr ΣIL(t = 0)ρ0δt (5.36)

=(V −U − 2ε)
Γδt
π

+ (1− 〈n〉ρ0)Γ
[

1 + (U − 2πΓ)
δt
π

]
. (5.37)

Againwe stress that this result also holds if the system isnot at the particle hole symmetry
point. In Fig. 5.4(a) IL(t) is shown for large interaction U = 8Γ at bias V = Γ as the
temperature is lowered. As expected the initial onset of the current follows Eq. (5.37).
Whereas for T & Γ the current monotonically converges to its stationary value, at lower
temperatures the current after an initial increase first decreases until tΓ ≈ 1 and then
turns up again. For T . 0.2Γ the stationary current is significantly higher than the local
maxima at tΓ ≈ 1/2. The local minimum at tΓ ≈ 1 becomes less pronounced if U is
decreased and eventually vanishes (not shown).

In Fig. 5.4(b) we compare the transient currents obtained by the T-flow with those
obtained in Ref. [178] using a two-particle-irreducible effective action (2PI) approach at
low temperature T = 0.1Γ and intermediate interaction U = 4Γ. We find overall good
agreement. In particular, both predict that the current slightly overshoots its stationary
value at large bias. At small bias the stationary current of the 2PI approach is slightly
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smaller compared to our T-flow result, which in the stationary benchmarks in Fig. 5.1(a)
compared favorably with other methods.
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Figure 5.4. (a) Transient current IL(t) for U = 8Γ, ε = −U/2, V = Γ and several
temperatures. Initially the dot is singly occupied, ρ0 = |↑〉〈↑|. (b) Transient current IL(t)
for U = 4Γ, ε = −U/2, T = 0.1Γ and several bias voltages. Solid lines: T-flow. Dashed
lines: 2PI approach from Ref. [178].

Finally, as an application we consider the transient effects of the interaction in the
empty-orbital regime ε � {Γ, V}, which is characterized by 〈n〉stat,T=0 ≈ 0. Perhaps
surprisingly, preparing the dot in a state with a higher occupation than its stationary
occupation need not lead to a simple decay of the occupation. Instead, it is possible that
the dot initially fills up more as predicted in Ref. [1] on quite general grounds. How this
can happen can be understood specifically from Eq. (5.35), which shows that initially
the occupation grows towards half filling – away from the stationary value – as dictated
by Π∞. Indeed, in Fig. 5.5 the occupation initially increases until tΓ ≈ 0.3, after which
the naively expected monotonic decay starts. The occupations then reenter their initial
value precisely at the reentrant time tr = Γ−1. More strongly, for the chosen initial state
this reentrance occurs for any local observable of the dot, as for example the correlation in
Fig. 5.5, implying that the entire reduced density operator returns to its initial value.

This at first puzzling reentrant behavior was already explained in Ref. [1] in gen-
eral terms showing that it is generically enforced in non-semigroup dynamics by the
fundamental property of trace-preservation of the dynamics. In short, for every time tr

the propagator has a fixed point denoted ρ1(tr) such that Π(tr)ρ1(tr) = ρ1(tr), which is
moreover a physical state, ρ1(tr) ≥ 0 and Tr ρ1(tr) = 1. Thus, all local observables must
return to their initial values at time tr if the initial state ρ0 = ρ1(tr) is prepared. (Note
that this argument does not imply reentrant behavior of non-local observables such as
currents measured outside the system.) Whereas in Ref. [1] this general effect was pre-
dicted, it was illustrated only for the occupation of a non-interacting spinless quantum
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dot coupled to a single reservoir, a solvablemodel. Herewe have illustrated that it occurs
for more than one observable and shown that it remains clearly visible in the strongly-
interacting, low-temperature case under finite bias transport conditions. We highlight
that the rationale behind the T-flowmethod ties in directlywith the competition between
finite-T and infinite-T dynamics that drives this physical effect.
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Figure 5.5. Reentrant effect for dot occupation and correlation for parameters U = 8Γ,
ε = 2.75Γ, V = Γ at T = 0. The reentrant effect for time tr = Γ−1 is realized by the initial
state ρ0 with 〈n↑〉ρ0 = 〈n↓〉ρ0 ≈ 0.131 and 〈n↑n↓〉ρ0 ≈ 0.007.

5.5 | Summary
In this chapter we presented the T-flow renormalization group method, which uses the
physical environment temperature to achieve a flow of the density-operator dynamics
to its nontrivial low-temperature limit. Starting from the simple high-temperature limit,
the temperature is lowered in many small steps using the self-consistent RG equations
(5.8)–(5.13). In this way we collect useful information about the physics at all traversed
finite temperatures, which sets our scheme apart from RG methods using unphysical
flow parameters.

We implemented the RG equations directly in time space at the example of an in-
teracting Anderson dot including vertex corrections. For voltages on the order of the
coupling or larger, stationarity is reached quickly, allowing us to benchmark our tran-
sient method in the stationary regime. We demonstrated quantitative agreement in
the current-voltage characteristics, noting in particular that the agreement with accurate
quantumMonteCarlo simulations extends up toU = 10Γ. Comparing transient currents
with the 2PI Green’s function results we found good agreement as well. Interestingly,
we could show analytically that the short time dynamics of both local and nonlocal
observables are temperature independent in the wide-band limit considered here, with
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important contributions from the short-time memory kernels. The observed collapse of
the data onto a T-independent limiting curvemay be of interest for experimental studies
of transient transport.

As an applicationwe investigated the reentrant effect thatwe noticed first in Ref. [1] in
the analysis of a non-interacting quantumdotmodel: the charge prepared on a quantum
dot, which is destined to decay, can initially show an unexpected further accumulation.
We showed that this effect is due to a generic interplay between short-time infinite-T
dynamics and long-time finite-T corrections and remains clearly visible even for strong
interactions and finite-bias non-equilibrium. Moreover, we illustrated that this effect
does not only occur for the occupation but also for the correlation of two electrons in
agreement with general arguments about non-semigroup dynamics that we put forward
in Ref. [1].

For the formulation and application of the method we focused on the case of equal
reservoir temperatures and studied the transient approach to non-equilibrium station-
ary states and transport quantities. However, we also provided the general formulation
for distinct temperatures of the reservoirs whose application to thermoelectric transport
with strong coupling and interaction is interesting. The additional heat currents of in-
terest in this situation [179, 180] can be computed by straightforward extension of the
presented technique for the charge current. Moreover, the presented method can be
extended in several further directions: (i) Since the T-flow allows to avoid the frequency
domain it is straightforward to include non-periodic driving of bias and gate voltages
[V(t) and ε(t)] or tunnel barriers [Γ(t)]. This comes at the numerical price of dealing
with double (triple) time-dependence of the contraction functions γ

p
1 and the memory

kernel K (the supervertex G1), but should present no principal problem. (ii) However, it
is equallywell possible to formulate the T-flow entirely in the Laplace-frequency domain
by changing the translation rules of the diagrams as in Ref. [23, 135]. This may provide
more direct access to stationary quantities than by converging transient calculations well
into the stationary regime, in particular for regimeswhere T, V � Γ. How this compares
with the well-developed E-flow scheme is an interesting open question. (iii) The T-flow
can also address systems with bosonic environments provided a renormalized pertur-
bation theory around the infinite temperature and wideband limit is set up analogous
to fermionic environments [29, 181], which seems possible.

We emphasized throughout that the presented T-flow scheme is naturally suggested
by physical considerations underlying the renormalized perturbation expansion. Nev-
ertheless, further considerations of its physical underpinnings would be of interest.
Indeed, early time-domain formulations of the density-operator RTRG [83, 181] were
motivated by considerations similar to those given in Sec. 5.1, but encountered technical
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issues. These were initially resolved by reformulations which abandoned the time-
domain [85, 182] and started from a renormalized perturbation theory which was later
identified as describing the T = ∞ limit [135, 136] as used here. This renormalization
by the T = ∞ reference solution plays a crucial role in the construction of a well-defined
RG flow for the open-system dynamics, in particular, for the special treatment required
for the stationary state. This is problematic when starting from a standard bare pertur-
bation expansion ("zero eigenvalue problem", see the discussion preceding Eq. (199) in
Ref. [23]).

In the present chapter we instead returned to the time-domain by exploiting the
insights gained in the above cited works. This has the advantage that the similarities
and differences with Wilson’s RG [70] become apparent, in particular the focus on the
long-range correlations which become explicit in the renormalized perturbation the-
ory about T = ∞. The ordinary perturbation expansion does not reveal the relevant
correlations since the T = ∞ and T < ∞ contributions are completely mixed up [135,
136]. This constitutes a key difference of the T-flow to other RG approaches. Its ap-
parently successful application here warrants further, more detailed consideration of
these physical underpinnings, in particular its close connection to the generation of mem-
ory effects. Importantly, here memory is characterized as retardation with characteristic
time 1/T, which is related but not the same as non-divisibility of dynamical maps [122]
(non-Markovianity).

The return to the time-domain achieved by our work may also enable general phys-
ical arguments to be applied more easily to technical considerations, especially since
our RG flow parameter can in principle be changed physically in the lab. A T-flow step
establishes a mapping between two entire physical evolutions at adjacent temperatures.
Operationally this corresponds to an intervention on the initially decoupled reservoir
state ρR(T) → ρR(T − δT) before the interaction with the system is started and before
the environment is discarded (integrated out) [Eq. (2.1)]. It has been stressed [122] that
interventions on the environment represent yet another way of characterizing memory
effects beyond the framework of retardation and non-divisibility of the reduced evolu-
tion mentioned above. Operationally defined mappings of entire evolutions have been
studied in detail in quantum information using the supermap [183] and process-tensor
formalisms [184] and these may find new applications here. To apply such considera-
tions here it is a crucial advantage that the T-flow allows one to stay in the time-domain,
since transformation to frequency domain tends to complicate rather than simplify op-
erational properties of time-evolutions [47].
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6

Conclusions and outlook

In this thesis we studied the dynamics of open quantum systems using the time-local
and time-nonlocal quantum master equations on which most research about dynamical
maps Π of open systems is based. A major theme was relating these two fundamental
approaches quantitatively, connecting the more complicated but often physically more
interesting time-local representation to the technicallymore powerful time-nonlocal one.
A second theme concerned systematic approximations beyond semigroups, where we
explored, in particular, slip corrections, different perturbative schemes, and renormal-
ization groups. The thread connecting these themes was the recurrent issue of memory,
understood as either retardation or divisibility of the dynamics.

6.1 | Connecting time-(non)local descriptions
of open quantum systems

Motivated by our initial detailed case study published in Ref. [1], we investigated the
unsolved problem of how the two canonical QMEs of open quantum systems are related.
We found that the time-local generator G and the time-nonlocal memory kernel K are
connected by a simple, yet general fixed-point relation G = K̂[G].

Especially in the stationary limit, it was possible to exploit this result directly, ana-
lytically revealing several non-perturbative insights. Most importantly, we proved the
sampling relation (3.15) relating spectral properties of G(∞) and K̂(ω) at pole frequen-
cies of Π̂(ω). We showed that this interesting interrelation between G(∞), K̂(ω) and
Π̂(ω) has important implications for the construction of semigroup Markov approx-
imations. First, the semigroup generators K̂(0) and G(∞) “naturally” suggested by
proponents of time-local and time-nonlocal approaches respectively are not identical,
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raising the questionwhichone is “better”. We found that, while the low-frequencykernel
K̂(0) has the advantage of always being well-defined, it is the long-time generator G(∞)

that is contained within the propagator as Π(t) = e−itG(∞)S + . . . . Here S is an inital
slip correction, whichwe constructed non-perturbatively from linearizations around the
sampled eigenvalue poles [Eq. (3.17)]. Applied to fermionic systems in particular, this
slip operator can be further analyzed as we reported in a separate publication [3]. Sec-
ond, the expansion (3.18), which in the time-nonlocal approach is purported to account
for “memory” corrections, can be exactly resummed to a non-perturbative expression
with the surprising result that is equal to G(∞), which is obtained in the time-local
approach bymanifestly ignoringmemory effects. This makes quantitative the difference
between memory as retardation/frequency dependence and memory as described by
non-divisible evolutions.

The discovered fixed-point relation is also applicable to much more complicated
transient effects. We have shown that G(t) can be constructed from iterations of the
fixed-point functional K̂[•] and illustrated the numerical stability for several examples.
This can work even in the most challenging case where G(t) has singularities at isolated
times, forwhich perturbative computations of G(t) are known to break down beyond the
first singularity. This underscores that our iterative construction of G(t) via the memory
kernel K(t) is by nature non-perturbative because it does not rely on the presence of
a small parameter. This apparent success warrants the investigation of several further
questions relating to the convergenceof the (transient and stationary) functional iteration,
the uniqueness of the fixed-points in both procedures, and the possible connection of
the iteration to renormalization group procedures, see also the discussion in Sec. 3.6.
These questions highlight the fact that the relation between the time-local and time-
nonlocal picture of the same quantum dynamics contains by itself deeper insights. The
question “What does it take to make the description of the evolution time-local without
introducing any error?” thus seems to be instructive.

6.2 | Perturbative series and renormalization groups
A second theme of this thesis was the construction and comparison of different approx-
imation strategies in the context of QMEs. We investigated what happens to a given
approximation scheme when altering its time locality by deriving translation rules be-
tween perturbative series for the memory kernelK and the generator G [Eqs. (4.4)–(4.5)].
Our result disentangles the more difficult G-expansion in terms of the simpler, time-
ordered K-expansion, connected in an overarching anti-time-ordered structure. We
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applied this in detail to the diagrammatic expansion of the memory kernelK [Eq. (4.19)]
and showed how the generator G can be expressed using the same diagrams, i.e. without
inventing a new language [Eq. (4.23)] obstructing the direct comparison.

This allowed us to compare the two approaches straightforwardly and in an unbiased
way. Analyzing the complete positivity of approximations and comparing them with
the exact solution for the non-interacting Anderson dot, we concluded that the time-
local approach might be more advantageous than the time-nonlocal approach in bare
expansions around the uncoupled limit Γ = 0. However, when considering the more
powerful renormalized expansion around the T = ∞ limit this conclusion is reversed.
Here, insisting on time-locality of the perturbation theory becomes problematic when
running the dissipative reference evolution backwards. As a result only the time-nonlocal
approach is reliable within a renormalized perturbative formulation. Thus, the question
how to translate established advanced approximations (going beyond bare perturbation
theory) within the time-local picture remains open.

The power of the renormalized perturbation theory became clear in the final analysis
presented, where it provided the natural physically motivated starting point for the
development of a new renormalization group scheme, which we called the T-flow. Here
the main idea was that temperature sets the inverse correlation time of the reservoirs.
Thus, decreasing temperature increases memory, here understood as the retardation
contained in the kernel K. We showed that the “memory” corrections obtained by
lowering the temperature can be systematically computed within this RG scheme. A
noteworthy technical feature of the T-flow method is that it can be formulated entirely
in time-space. It is physically interesting that the RG flow parameter can, in principle,
be changed in the lab, possibly allowing a more operational formulation of the technical
scheme.

Despite the presented successful benchmarking of the T-flow with various other
approaches, many questions remain unexplored. For example, the present time-space
formulation is clearly disadvantageous if stationarity is only reached after very long
times, which happens in the considered Anderson dot if V, T � Γ. In this case, a
reformulation of the method in Laplace space might be favored. Additionally, the
extension tomodelswith bosonic environmentswould be of interest. Thiswould require
one to set up a renormalized perturbation theory around the infinite temperature limit
for bosonic environments first, which seems possible.
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A

Exact resummation of the memory
expansion

In Sec. 3.2.4 we mentioned that the memory expansions of Refs. [41, 42] are contained in
our fixed-point relation (3.4). Here we give an explicit formula for all terms. Moreover,
we sum the series to a self-consistent form and recover our key results (3.4) and (3.9).

Memory-expansion. We essentially follow the approach of Ref. [41] noting that we
have verified that Ref. [42] achieves exactly the same thing by manipulating partial
integrations. Both works start from the time-nonlocal QME (2.3) and construct the time-
local QME (2.9). Importantly, no weak coupling approximation is made in these works
but they do restrict attention to the stationary limit t0 → −∞ by constructing the
approximate time-local QME d

dt Π(t− t0) ≈ −iG(∞)Π(t− t0). Ref. [41] considers only
the leadingmemory-correction (3.18). Herewemakenoneof thementionedassumptions
and specialize to the case of Refs. [41, 42] only at the end [Eq. (A.10)].

Thus, the summation of the memory expansion amounts to the construction of
G(t, t0) from K(t, s) such that we have iΠ̇(t, t0) =

∫ t
t0

dsK(t, s)Π(s, t0) = G(t, t0)Π(t, t0).
In themain text thiswas solvedbyexploiting thedivisor,G(t, t0) =

∫ t
t0

dsK(t, s)Π(s, t|t0).
In our formulation, the approach taken inRefs. [41, 42] amounts to computing the inverse
divisor as

Π(s, t|t0) = Π(s, t0)Π(t, t0)
−1 (A.1a)

=
∞

∑
k=0

1
k!
(−1)k(t− s)kF k(t, t0) (A.1b)

by inserting the memory-expansion Π(s, t0) = ∑k
1
k! (−1)k(t− s)k∂k

t Π(t, t0) of quantities
in the past time s around the present time t > s. For example, Eq. (3.18) discussed
in Ref. [41] corresponds to the k = 0, 1 terms. Here the superoperator-valued Taylor
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coefficients F k(t, t0) are the time-local generators of the k-th derivative of the propagator:

∂k
t Π(t, t0) = F k(t, t0)Π(t, t0). (A.2)

Written as F k(t, t0) := [∂k
t Π(t, t0)]Π(t, t0)−1 they are easily shown to obey the recursion

relation

F k(t, t0) = ∂tF k−1(t, t0) +F k−1(t, t0)[−iG(t, t0)] (A.3)

with starting condition F 0(t, t0) = I giving, for instance,

F 1(t, t0) =− iG(t, t0) (A.4a)

F 2(t, t0) =− i∂tG(t, t0) + [−iG(t, t0)]
2 (A.4b)

F 3(t, t0) =− i∂2
tG(t, t0) + [−iG(t, t0)][−i∂tG(t, t0)]

+ 2[−i∂tG(t, t0)][−iG(t, t0)] + [−iG(t, t0)]
3 (A.4c)

This suggests inserting the ansatz

F k(t, t0) =
k

∑
n=1

k−n

∑
p1=0

. . .
k−n

∑
pn=0

δk−n,p1+...+pn Fn
p1 ...pn

[−i∂p1
t G(t, t0)] . . . [−i∂pn

t G(t, t0)] (A.5)

and deriving the recursion relations for the coefficients

Fn
p1...pn

=
n

∑
j=1

Fn
p1...(pj−1)...pn

for pn ≥ 1, (A.6a)

Fn
p1...pn−10 =

n−1

∑
j=1

Fn
p1...(pj−1)...pn−10 + Fn−1

p1 ...pn−1
. (A.6b)

Together with the starting conditions F1
0 = 1 these define all the coefficients of the

memory expansion. Construction of the general solution of the recursion equations (A.6)
is very cumbersome and hides the elegant functional fixed-point relation.

Fixed-point equation. We now show that the result (A.1b) with (A.5) equivalently fol-
lows from our fixed-point relation (3.4) by inserting into Eq. (3.3) the memory expansion
G(si, t0) = ∑pi

1
pi !
(−ti)

pi ∂
pi
t G(t, t0) and performing the nested integrations over variables

ti = t− si:

Π(s, t|t0) = T→e−
∫ t

s dτ[−iG](τ,t0) (A.7a)

=
∞

∑
n=0

(−1)n
∫

dsn . . . ds1

t>sn>...>s1>s

[−iG(s1, t0)] . . . [−iG(sn, t0)] (A.7b)

=
∞

∑
k=0

(−1)k

k!
(t− s)kF k(t, t0). (A.7c)
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Appendix A. Exact resummation of the memory expansion

We obtain the explicit general form of all coefficients:

Fn
p1 ...pn

=
(n + ∑i pi)!

∏i pi! ∏n−1
i=0 [∑

i
j=0 pn−j]

(A.8a)

=
n−1

∏
i=1

(
pn−i + ∑i−1

j=1(pn−j + 1)
pn−i

)
(A.8b)

=
n−1

∏
i=1

F2
pi−1,pi+...+pn+(n−i). (A.8c)

The factorization (A.8b) into binomials shows that all coefficients are in fact integers.
Using the form (A.8c) one verifies1 that the coefficients are indeed the solutions to the
recursion relations (A.6). With G(t, t0) =

∫ t
t0

dsK(t, s)Π(s, t|t0) this establishes that the
laborious determination of the coefficients and subsequent summation of the memory
expansion (A.1b) envisaged in Refs. [41, 42] ultimately leads to our general functional
fixed-point equation (3.4). Our derivation of this self-consistent equation in themain text
circumvents all above complications by immediately identifying the divisor in Eq. (3.2).
However, even if one is interested in generatingmemory expansions, our approach (A.7)
via the divisor is far simpler.

Noting the special coefficient values Fn
0...0 = 1 we see that

F k = [−iG]k + (terms involving at least one time-derivative of G) (A.9)

Thus in the stationary limitwhere limt0→−∞ ∂k
tG(t, t0) = 0 and limt0→−∞ G(t, t0) = G(∞):

Π(s− t| −∞) =
∞

∑
k=0

(−1)k

k!
(t− s)k[−iG(∞)]k

= eiG(∞)(t−s). (A.10)

Inserted into G(∞) =
∫ ∞

0 dsK(t − s)Π(s − t| −∞) we thus also directly recover our
stationary fixed-point equation (3.9) for time-translational systems, K(t, s) = K(t− s)
by explicit summation of the stationarymemory expansion. This is the specific expansion
studied in Refs. [41, 42].

1One verifies Eq. (A.6a) first for n = 2, giving F2
p1 p2

= F2
(p1−1)p2

+ F2
p1(p2−1), and uses this relation

for n > 2 to simplify the sum of the last two terms, Fn
p1 ...(pn−1−1)pn

+ Fn
p1 ...pn−1(pn−1). Then one adds

Fn
p1 ...(pn−2−2)pn−1 pn

and so forth. Eq. (A.6b) follows as special case of Eq. (A.6a) since Fn
p1..pn−1(−1) = Fn−1

p1 ...pn−1
.
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B

Relation between G and
gradient/Moyal expansion of K

The memory expansion (A.1b) implies that the generator of the time-local QME (2.9)
may be written as a gradient expansion

G(t, t0) =
∞

∑
k=0

(−1)k

k!

[ ∫ t

t0

dsK(t, s)(t− s)k
]
F k(t, t0) (B.1)

=
∞

∑
k=0

1
k!

[ ∂k

(−i∂ω)k K̂(ω, t, t0)
]∣∣∣

ω=0
F k(t, t0) (B.2)

with frequency derivatives of the “finite-time Laplace transform”

K̂(ω, t, t0) :=
∫ t−t0

0
dseiωsK(t, t− s) (B.3)

of the memory kernel. Since F k(t, t0) := [∂k
t Π(t, t0)]Π(t, t0)−1 = f (G, . . . , ∂k−1

t G) has no
simple structure as function of k [Eq. (A.5)] it is not clear how the series can be summed,
not even formally. This reflects that it arises from the nontrivial anti-time-ordered
exponential (A.7). If one instead considers its action on Π(t, t0),

Π̇(t, t0) = −i
∞

∑
k=0

(−1)k

k!

[ ∫ t

t0

dsK(t, s)(t− s)k
]
∂k

t Π(t, t0) (B.4a)

= −i
∞

∑
k=0

1
k!

[ ∂k

(−i∂ω)k K̂(ω, t, t0)
]∣∣∣

ω=0
∂k

t Π(t, t0), (B.4b)

then the series can be formally summed to give a nonlinear time-frequency-domain differ-
ential operator. Its action on superoperator functions of t must coincide with the linear
action of G(t, t0) on the superoperator evaluated at t:

K̂(ω, t, t0)ei
←−
∂

∂ω

−→
∂
∂t

∣∣∣
ω=0

Π(t, t0) = G(t, t0)Π(t, t0). (B.5)

94



Appendix B. Relation between G and gradient/Moyal expansion of K

Thus, G(t, t0) here plays the role of a (superoperator-valued) eigenvalue of this time-
domain differential operator. This differential operator is constructed as frequency-domain
differential operator acting to the left on the memory kernel transform K̂(ω, t, t0).
The above follows the well-known Moyal approach [139, 157] to quantum physics of
closed systems, where one enforces locality at the price of introducing position- and
momentum-space differential operators acting both to the right and to the left. Its exten-
sion to the time-nonlocal evolution of open systems within the density-operator approach
is thus closely related to the time-convolutionless approach based on the time-local
equation (2.9).

Clearly, this formal relation between the generator and the memory kernel is easily
written down. However, our functional fixed-point result (3.4) goes beyond this by
explicitly expressing the action of the time-domain differential operator on the left hand
side of Eq. (B.5), evaluating ∂k

t Π(t, t0) = F k(t, t0)Π(t, t0) [Eq. (A.5)], and summing the
series to an anti-time-ordered exponential in terms of G(t, t0). This is demonstrated
by Eq. (A.7) read in reverse order. As the main text shows, this makes the fixed-point
relation a powerful analytical and numerical tool.

For time-translational systems, K(t, s) = K(t− s), taking the stationary limit leads
to the simplification limt0→−∞ F k(t, t0) = (−iG(∞))k, giving

G(∞) =
∞

∑
k=0

(−1)k

k!

[ ∫ t

−∞
dsK(t− s)(t− s)k

]
(−iG(∞))k (B.6)

=
∞

∑
k=0

1
k!

[ ∂k

∂ωk K̂(ω)
]∣∣∣

ω=0
G(∞)k (B.7)

with frequency-derivatives of the Laplace-transformed memory kernel K̂(ω). In this
case, the gradient expansion can be summed to give an alternative expression for our
stationary fixed point relation (3.9):

K̂(ω)e
←−
∂

∂ω G(∞)
∣∣
ω=0 = G(∞). (B.8)

This gives a nonlinear differential operator acting to the left on superoperator func-
tions of ω and is a mere formal expression of our stationary fixed-point equation (3.9),
K̂(G(∞)) :=

∫ t
−∞ dsK(t− s)eiG(∞)(t−s). Equation (B.8) extends the shift property for ordi-

nary Laplace transforms, e
∂

∂ω ∆ f̂ (ω) = f̂ (ω + ∆), to our result (3.10) with superoperator-
valued frequency argument ∆ = G(∞). To ensure that the memory kernel generates a
trace-preserving evolution [Eq. (3.6)] the frequency derivatives must stand on the right
and therefore needs to act to the left to accomplish the shift.
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C

Iteration in the resonant level model

For the resonant levelmodel both the stationary [Sec. 3.3.1] and transient [Sec. 3.3.2] fixed-
point iteration terminate at the first step when starting from any zero-trace-preserving
superoperator X, i.e., Tr X• = 0. This can be seen by writing the time-nonlocal part of
the kernel as [1, 136]

KN(t) = −iΓk(t)e−Γt/2G+
+G+
− , (C.1)

where we used the fermionic creation superoperators (4.13), which do not have a spin
index σ in the RLM. Because of the superpauli principle they satisfy G+

+G+
−G+

η = 0 (note
that this would not hold in the Anderson model because of the higher Hilbert space
dimension). Expanding any zero-trace-preserving superoperator X in terms of products
of superfields one verifies that in each term G+

η stands on the far left. This implies

KN(t− s)eiX(t−s) = KN(t− s) (C.2)

and by Eq. (3.20) the transient [Eq. (3.47)] and stationary [Eq. (3.46)] iteration find the
exact generator in a single step. Starting from an arbitrary superoperator X, the first
iteration will make it zero-trace by Eq. (3.6) and by the above result the second iteration
will be converged.
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D

Well-definedness of second and
fourth order perturbation theory

It is at first unclear whether the diagrams in Eqs. (4.20a)–(4.20b) and Eqs. (4.28a)–(4.28b)
of the bare and renormalizedK perturbation theory respectively are actuallywell defined
because of the singularity in the contraction function γ−ησ(t) [Eq. (4.21)] at t = 0. This
arises because we have taken the wideband limit from start. In Ref. [135] the bandwidth
dependence was discussed [Eq. (75)–(76) loc. cit.] in the frequency representation but
not in the time-representation used here. Here we specifically show the finiteness of the
renormalized perturbation theory up to fourth order using corresponding arguments.
By replacing L∞ → L everywhere the exact same steps establish the finiteness of the
bare perturbation theory. First note that γ−ησ(t) diverges as 1/t for t→ 0, in particular

lim
t→0

t γ−ησ(t) = −i ∑
r

Γrσ

π
. (D.1)

However, because the superfermion superoperators anticommute [Eq. (4.15)] we have

∑
η

γ−ησ(t)G
+
ησG+

η̄σ =
1
2 ∑

η

[
γ−ησ(t)G

+
ησG+

η̄σ + γ−η̄σ(t)G
+
η̄σG+

ησ

]
(D.2a)

=
1
2 ∑

η

[
γ−ησ(t)− γ−η̄σ(t)

]
G+

ησG+
η̄σ (D.2b)

=
−i
2 ∑

ηr

[
eiη̄µrt − eiηµrt

] ΓrσTr

sinh(πTrt)
G+

ησG+
η̄σ (D.2c)

= ∑
ηr

sin(η̄µrt)
ΓrσTr

sinh(πTrt)
G+

ησG+
η̄σ (D.2d)

= −2 ∑
r

ΓrσTr
sin(µrt)

sinh(πTrt)
G+
+σG+

−σ. (D.2e)
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Appendix D. Well-definedness of second and fourth order perturbation theory

Thus, we see that the apparent singularity in the left hand side of Eq. (D.2a) at t = 0
never contributes. The t→ 0 limit can be evaluated in Eq. (D.2e) and is given by

lim
t→0

∑
η

γ−ησ(t)G
+
ησG+

η̄σ = −2 ∑
r

Γrσ

π
µrG+

+σG+
−σ. (D.3)

We can now rewrite the second order renormalized K diagram as

=−∑
ησ

γ−ησ(t)G
+
ησe−iL∞tG+

η̄σ (D.4)

=−∑
ησ

γ−ησ(t)G
+
ησ

[
e−iL∞t − I

]
G+

η̄σ −∑
ησ

γ−ησ(t)G
+
ησG+

η̄σ (D.5)

Using Eq. (D.1) and Eq. (D.3) this immediately shows that this diagram is finite for t→ 0:

lim
t→0

= ∑
ησr

Γrσ

π
G+

ησL∞G+
η̄σ + 2 ∑

σr

Γrσ

π
µrG+

+σG+
−σ. (D.6)

Since the second order diagram is contained within one of the fourth order diagrams
[Eq. (4.28b)], it follows that

= O(t) as t→ 0. (D.7)

This is because the outer contraction γ−η1σ1
(t) diverges as 1/t, but the inner integrals∫ t

0 dt1
∫ dt1

0 dt2 · · · = O(t2) vanish quadratically. To see the well-definedness of the other
fourth order diagram we decompose it as

= F1(t) + F2(t), (D.8)

F1(t) :=− ∑
η1σ1

∑
η2σ2

∫ t

0
dt1

∫ t1

0
dt2γ−η1σ1

(t− t2)γ
−
η2σ2

(t1)

× G+
η1σ1

e−iL∞(t−t1)G+
η2σ2

[
e−iL∞(t1−t2) − I

]
G+

η̄1σ1
e−iL∞t2 G+

η̄2σ2
, (D.9)

F2(t) :=− ∑
η1σ1

∑
η2σ2

∫ t

0
dt1

∫ t1

0
dt2γ−η1σ1

(t− t2)γ
−
η2σ2

(t1)

× G+
η1σ1

e−iL∞(t−t1)G+
η2σ2

G+
η̄1σ1

e−iL∞t2 G+
η̄2σ2

. (D.10)

The first contraction γ−η1σ1
(t − t2) in F1(t) diverges if t2 → t. But in this limit the fac-

tor e−iL∞(t1−t2) − I vanishes with O(t1 − t2) because of the time ordering t ≥ t1 ≥ t2.
Therefore the divergence in γ−η1σ1

(t − t2) is always regularized. The second contrac-
tion γ−η2σ2

(t1) in F1(t) diverges for t1 → 0, which is regularized by the inner integral∫ t1
0 dt2 = O(t1). Hence F1(t) is always finite. In the second term F2(t) one first uses the
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Appendix D. Well-definedness of second and fourth order perturbation theory

anticommutation G+
η2σ2

G+
η̄1σ1

= −G+
η̄1σ1

G+
η2σ2

. Note again that in the limit t2 → t we also
have t1 → t because of the time ordering. This means that the factor

γ−η1σ1
(t− t2)G+

η1σ1
e−iL∞(t−t1)G+

η̄1σ1
(D.11)

is always finite for t2 → t following the same argument which established that Eq. (D.4)
has the finite limit (D.6). For precisely the same reason the other factor

γ−η2σ2
(t1)G+

η2σ2
e−iL∞t2 G+

η̄2σ2
(D.12)

is finite for t1 → 0. Therefore F2(t) is also always finite, establishing thewell-definedness
of this last diagram.
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E

Exact generator at U = 0

Here we show that the renormalized second order generator G = L∞ + G(2)ren is already
exact in the noninteracting case by showing that the fourth order correction is identically
zero, G(4)ren = 0, by a nontrivial cancellation of terms. To do so we split up the fourth
order renormalized generator into two contributions

−iG(4)ren(t) =A1(t)− A2(t), (E.1)

A1(t) := ·Π−1
∞ + ·Π−1

∞ , (E.2)

A2(t) := ·Π−1
∞ · ·Π−1

∞ − ·Π−1
∞ . (E.3)

and show that A1(t) = A2(t). Themain simplification forU = 0 is that the renormalized
free Liouvillian L∞ and the superfermions satisfy the commutation relation[

L∞, G+
ησ

]
=
(

ηε− i
2 ∑

r
Γrσ

)
G+

ησ, (E.4)

see Eq. (118) in Ref. [136]. From this it follows that

G′ησ(t) := eiL∞tG+
ησe−iL∞t (E.5a)

= e
(

iηε+
1
2 ∑r Γrσ

)
tG+

ησ. (E.5b)

These transformed superfermions still anticommute
{

G′η1σ1
(t1), G′η2σ2

(t2)
}
= 0. We now

rewrite A1(t) using the G′ησ as

A1(t) = e−iL∞t
∫

dt1dt2dt3

t>t1>t2>t3>0

[
γη1σ1(t− t3)γη2σ2(t1 − t2)G′η1σ1

(t)G′η2σ2
(t1)G′η̄2σ2

(t2)G′η̄1σ1
(t3)

− γη1σ1(t− t2)γη2σ2(t1 − t3)G′η1σ1
(t)G′η2σ2

(t1)G′η̄1σ1
(t2)G′η̄2σ2

(t3)
]
eiL∞t (E.6a)

= e−iL∞t
∫

dt1dt2dt3

t>t1>t2>t3>0

[
γη1σ1(t− t3)γη2σ2(t1 − t2)G′η1σ1

(t)G′η̄1σ1
(t3)G′η2σ2

(t1)G′η̄2σ2
(t2)
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Appendix E. Exact generator at U = 0

+ γη1σ1(t− t2)γη2σ2(t1 − t3)G′η1σ1
(t)G′η̄1σ1

(t2)G′η2σ2
(t1)G′η̄2σ2

(t3)
]
eiL∞t (E.6b)

= e−iL∞t
[∫

dt2dt3dt1

t>t2>t3>t1>0

+
∫

dt2dt1dt3

t>t2>t1>t3>0

]
× γη1σ1(t− t1)γη2σ2(t2 − t3)G′η1σ1

(t)G′η̄1σ1
(t1)G′η2σ2

(t2)G′η̄2σ2
(t3)eiL∞t (E.6c)

= e−iL∞t
∫ t

0
dt1

∫ t

t1

dt2

∫ t2

0
dt3

× γη1σ1(t− t1)γη2σ2(t2 − t3)G′η1σ1
(t)G′η̄1σ1

(t1)G′η2σ2
(t2)G′η̄2σ2

(t3)eiL∞t (E.6d)

From Eq. (E.6a) to Eq. (E.6b) we used the anticommutation property of the G′ησ. From
Eq. (E.6b) to Eq. (E.6c) we relabeled the integration variables as t1 → t2 → t3 → t1 in the
first term and as t1 ↔ t2 in the second term. But for A2(t) we have similarly

A2(t) = e−iL∞t
[ ∫ t

0
dt1

∫ t

0
dt2

∫ t2

0
dt3 −

∫
dt1dt2dt3

t>t1>t2>t3>0

]
× γη1σ1(t− t1)γη2σ2(t2 − t3)G′η1σ1

(t)G′η̄1σ1
(t1)G′η2σ2

(t2)G′η̄2σ2
(t3)eiL∞t (E.7a)

= e−iL∞t
∫ t

0
dt1

∫ t

t1

dt2

∫ t2

0
dt3

× γη1σ1(t− t1)γη2σ2(t2 − t3)G′η1σ1
(t)G′η̄1σ1

(t1)G′η2σ2
(t2)G′η̄2σ2

(t3)eiL∞t. (E.7b)

By comparison we thus see that A1(t) = A2(t). Hence G(4)ren = 0.
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F

Effective supervertices in T-flow

Here we give the precise definition of the supervertices and show how the vertex dia-
grams can be translated into explicit equations. First, it is important to keep inmind that
in contrast to the bare superfermion G+

1 [Eq. (4.13)] the effective supervertex G1 also has
a dependence on time. Specifically we need to distinguish the time arguments of the
latest, the uncontracted and the earliest vertex within G1, which we label as t, τ and s
respectively. Thus t ≥ τ ≥ s and we denote G1 = G1(t, τ, s). For time translation invari-
ant systems this simplifies to G1(t− τ, τ − s). Every vertex except the uncontracted one is
associated with a prefactor of −i, and every cut contraction line with a fermion minus
sign. Importantly the contraction function associated with the uncontracted vertex is
not part of G1 itself. Thus, the first two diagrams in the definition of G1 [Eq. (5.4)] are
translated as

=G+
1 δ̄(t− τ)δ̄(τ − s), (F.1)

t τ s
=γ−2 (t− s)G+

2 Π(t, τ)G+
1 Π(τ, s)G+

2̄ , (F.2)

where we indicated the time arguments in the second diagram. Higher order terms also
contain internal vertices with time arguments labeled from left to right as t1 > · · · > tn

over which one has to integrate in a time-ordered way. For example, the third term of
(5.4) reads

t t1 t2 τ s
=
∫ t

τ
dt1

∫ t1

τ
dt2γ−2 (t− t2)γ

−
3 (t1 − s)

× G+
2 Π(t, t1)G+

3 Π(t1, t2)G+
2̄ Π(t2, τ)G+

1 Π(τ, s)G+
3̄ . (F.3)

The 2-point vertex G12 = G12(t, τ1, τ2, s) is defined such that the uncontracted vertex
with index 1 (at time τ1) is always to the left of the uncontracted vertex with index 2 (at
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Appendix F. Effective supervertices in T-flow

time τ2), i.e., τ1 > τ2. Thus

t τ1 τ2 s
= −γ−3 (t− s)G3Π(t, τ1)G1Π(τ1, τ2)G2Π(τ2, s)G3̄. (F.4)
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G

Temperature dependence of the
propagator Π

The propagator Π can be computed from the renormalized kernel Σ via the Dyson
equation

Π(t) = Π∞(t)− i[Π∞ ∗ Σ ∗Π](t), (G.1)

where ∗ denotes time convolution. Suppressing time arguments and taking a derivative
with respect to the temperature Tr of the r-th reservoir it follows that

∂Π
∂Tr

=Π∞ ∗
∂ [−iΣ]

∂Tr
∗Π + Π∞ ∗ [−iΣ] ∗ ∂Π

∂Tr
(G.2)

=− i
(
Π∞ + Π∞ ∗ [−iΣ] ∗Π∞ + · · ·

)
∗ ∂Σ

∂Tr
∗Π (G.3)

=− iΠ ∗ ∂Σ
∂Tr
∗Π. (G.4)

To obtain Eq. (G.3) one iterates the self-consistent equation Eq. (G.2) for ∂TΠ treating
Π, Π∞ and Σ as given. Eq. (G.4) follows by recognizing the term in parenthesis as the
solution of the self-consistent equation (G.1) for Π. Setting T equal for all reservoirs
we obtain Eq. (5.11) of the main text. Inserting the leading order term of ∂TΣ it is
straightforward to show that the leading short-time dependence of ∂TΠ is quartic for
small times δt:

∂Π
∂Tr

(δt) = − π

36
TrΓrσ1

(
G+

1 L∞G+
1̄ + η1µrG+

1 G+
1̄

)
δt4. (G.5)

This explains theT-independent short-timebehaviordiscussed in themain text [Eq. (5.35)].
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H

Finiteness of T-flow equations

Here we establish that the T-flow equations are explicitly free of time-divergences. The
diagrams in Eq. (5.8) are explicitly given by

(t, s) =−
∫ t

s
dt1

∫ t1

s
dt2

∂γ1

∂T
(t− t2)G+

1 Π(t, t1)G1̄(t1, t2, s), (H.1)

(t, s) =−
∫ t

s
dt1

∫ t1

s
dt2γ1(t− t2)G+

1
∂Π
∂T

(t, t1)G1̄(t1, t2, s), (H.2)

(t, s) =−
∫ t

s
dt1

∫ t1

s
dt2γ1(t− t2)G+

1 Π(t, t1)
∂G1̄
∂T

(t1, t2, s). (H.3)

Whereas (H.1) does not contain any singularities, this is not immediately obvious for
Eqs. (H.2) and (H.3). In Eq. (H.2) we use that ∂TΠ(t) = O(t4), see Eq. (G.5). This
small-time behaviour regularizes the 1/t divergence of the contraction function. The
finiteness of (H.3) can be seen by switching the order of integrations:∫ t

s
dt1

∫ t1

s
dt2γ1(t− t2) =

∫ t

s
dt2γ1(t− t2)

∫ t

t2

dt1 (H.4)

Now the inner t1 integral vanishes as O(t − t2) making the term finite. Using very
similar arguments one establishes that all diagrams in (5.12) and (5.13) are well behaved,
making the T-flow equations explicitly time-singularity free.
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I

Numerical solution of the T-flow
equations

The truncated T-flow equations from the main text form a closed set of implicit (self-
consistent) differential equations for Σ, G1 and G12 and we here comment on their
numerical discretization. Suppressing time arguments these equations are of the form

∂Σ
∂T

= F0

[
Σ,

∂Σ
∂T

, G1,
∂G1

∂T

]
, (I.1)

∂G1

∂T
= F1

[
Σ,

∂Σ
∂T

, G1,
∂G1

∂T
, G12,

∂G12

∂T

]
, (I.2)

∂G12

∂T
= F2

[
Σ
]
, (I.3)

where the functionals Fi are given by the right-hand sides of Eqs. (5.8), (5.12) and (5.13).
We do not explicitly indicate the dependence on the propagator Π and its temperature
derivative ∂TΠ, since these can be computedusingΣ and ∂TΣ as the solutions of Eqs. (2.3)
and (5.11), respectively. Defining the vector Φ := (Σ, G1, G12) the T-flow equations thus
have the form

∂Φ
∂T

= F
[

Φ,
∂Φ
∂T

]
. (I.4)

To simplify the discussion we assume an equidistant temperature grid Tn := nδT
for some small stepsize δT > 0, noting that in practice the stepsize should be var-
ied based on local error estimates to reduce numerical effort and improve accuracy.
Our goal is to compute Φn := Φ(Tn) and ∂TΦn := ∂TΦ(Tn) on this grid assuming
Φn+1, Φn+2, . . . and ∂TΦn+1, ∂TΦn+2, . . . are already available. To do so we first approx-
imate ∂TΦn ≈ (−3Φn + 4Φn+1 −Φn+2)/(2δT) leading to

Φn =
4
3

Φn+1 −
1
3

Φn+2 −
2
3
F
[

Φn,
−3Φn + 4Φn+1 −Φn+2

2δT

]
δT +O(δT3). (I.5)
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Appendix I. Numerical solution of the T-flow equations

This is the well-known second order backwards differentiation formula (BDF2) [185]. To
evaluate Eq. (I.5) further we approximate on the right hand side Φn = Φ(P)

n +O(T3),
where Φ(P)

n denotes the Adams-Bashforth predictor [185]

Φ(P)
n := Φn+1 −

(
3
2

∂Φ
∂T

∣∣∣∣
n+1
− 1

2
∂Φ
∂T

∣∣∣∣
n+2

)
δT. (I.6)

Thus we obtain both Φn and ∂TΦn = F
[
Φ(P)

n , (−3Φ(P)
n + 4Φn+1 −Φn+2)/(2δT)

]
as

wanted.
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